
 WinEdit Help Index
The Index lists Help topics available for WinEdit. Use the scroll bar to see entries not currently visible in
the Help window.

OverView and Startup Options
Ordering Information
Keyboard and Mouse

Menu Commands
File Menu Macro Menu
Edit Menu Window Menu
Search Menu Utility Menu
Project Menu

Procedures
Changing Printers and Printer Options
Compiling (Running other programs)
Control Bar
Customizing WinEdit's Error Parsing
Editing Text
Working With Multiple Documents
Extended Help
Finding Text
Key Assignments
Printing Documents
Saving Documents
Setting Preferences
Setting Margins, Headers and Footers
Syntax coloring
Undo and Redo
Using Regular Expressions
Windows 3.1 Support

Customizing WinEdit
Configuration Files Extension DLL Utility Menu
WinEdit Extension API's WIL Language Commands

WinEdit © 1991, 95 Steve Schauer.    All rights reserved

Ordering Information
Licensing our products brings you wonderful benefits.    Some of these are:
        - Gets rid of that pesky reminder window that comes up when you start
            up the software.
        - Entitles you to one hour free phone support for 90 days (Your dime).
        - Insures that you have the latest version of the product.
        - Encourages the authors of these programs to continue bringing you
            updated/better versions and new products.
      -    Gets you on our mailing list so you are occassionally notified of
            spectacular updates and our other Windows products.
      -    And, of course, our 90-day money back guarantee.

International customers.   
Although we do prefer payment by Credit Card we can accept non-US-bank checks under
certain conditions.    The check MUST be in your currency -- NOT IN US$ --    Just look in your
newspaper for the current exchange rates, make out your check and send mail it to us.    We
will take care of the rest.    No Eurocheques please.   

Send to: Wilson WindowWare, Inc.
 2701 California Ave SW #212
  Seattle, WA 98116
                                USA

or call: (800) 762-8383    (USA orders only)
    (206) 938-1740    (customer service)
 (206) 937-9335    (tech support)
 (206) 935-7129    (fax)

                    (Please allow 2 to 3 weeks for delivery)

WILSON WINDOWWARE ORDER FORM

WILSON WINDOWWARE ORDER FORM
Name:      __

 Company:__

 Address:__

                                __

 City:      ________________________    St:______    Zip:___________

 Phone: (______)_________________        Country:________________

____ WinBatch 95    @    $99.95 : _______.____   
For Windows 95/Windows NT

____ WinBatch 95 Compiler @$495.00 : _______.____   
For Windows 95/Windows NT

____ WinEdit 95 @$99.95 : _______.____   
For Windows 95/Windows NT

(all products include both 16 and 32 bit versions)

Upgrades
____ WinEdit to WinEdit 95 @    $30.00 : _______.____   

____ WinBatch to WinBatch 95 @    $40.00 : _______.____   

                  WinBatch Compiler to
____ WinBatch 95 Compiler @$200.00 : _______.____   

Shipping
____ US and Canada shipping @        $5.00 : _______.____   

____ Foreign air shipping
(except Canada) @    $14.50 : _______.____

    Total: _______.____

Please enclose a check payable to Wilson WindowWare or you may use Access, Amex, Visa,
MasterCharge, or EuroCard.      For credit cards,    please enter the information below:
 Card #:__ __ __ __ - __ __ __ __ - __ __ __ __ - __ __ __ __          Expiration date: ____/____

 Signature:    ___

 Where did you hear about or get a copy of our products?

International customers please see note on previous page.

WinEdit OverView
WinEdit is an ASCII text editor capable of editing numerous ASCII text files of an almost
unlimited size (limited only by available Windows memory).    WinEdit is first and foremost a
programmer's editor, with many features designed for creating and maintaining program
source code.    Build, debug and run your programs directly from WinEdit with the ability to
view any compiler errors or warnings and the corresponding source code.
As an ASCII text editor, WinEdit allows you to open numerous text files at once, print half
sized "two-up" pages side by side in landscape orientation, print headers and footer text
(document name, date and time, page number), merge files together, and word wrap your
text to the size of the window (word wrap).
Startup Options
You can use one or more of the following switches on the WinEdit command line:

/M:<text> run the named macro before doing anything else
/P:<text> print the named file, then quit
/W:<text> set the project to the named file
/L:<0|1|2> set the feature level to LITE,STANDARD, or PRO
/#:<number>go to line number
filename(s) load the named file(s), can include wildcards

Some help topics include the designation [Standard] or [Professional].    This indicates a
feature which is not available in the Lite version of WinEdit.    The Standard version of
WinEdit includes all features described here except those designated [Professional].
Wilson WindowWare, Inc.
2701 California Ave SW    #212
Seattle,    WA    98116    USA
Orders: (800) 762-8383
Support: (206) 937-9335
Fax: (206) 935-7129
Microsoft® Windows is a Trademark of Microsoft Corporation.

WinEdit Keyboard and Mouse Commands
Moving the Insertion Point
Key(s) Function
Up Arrow Moves up one line.
Down Arrow Moves down one line.
Right Arrow Moves right one character.
Left Arrow Moves left one character.
CTRL+Right Arrow Moves right one word (insertion point is positioned at the

beginning of the next word).
CTRL+Left Arrow Moves left one word (insertion point is positioned at the

beginning of the previous word).
Home Moves to the beginning of the line.
End Moves to the end of the line.
PgUp Moves the view up one screenful.
PgDn Moves the view down one screenful.
CTRL+Home Moves to the beginning of the document.
CTRL+End Moves to the end of the document.
Selecting Text
Key(s) Function
SHIFT+Left or Right Arrow Extends the selection of text one character at a time.
SHIFT+Down or Up Selects one line of text up or down from the current selection.
SHIFT+Home Selects text from the insertion point to the beginning of the line.
SHIFT+End Selects text from the insertion point to the end of the line.
CTRL+SHIFT+Left Arrow Selects the previous word.
CTRL+SHIFT+Right Arrow Selects the next word.
SHIFT+PgUp Selects the previous screen of text.
SHIFT+PgDn Selects the next screen of text.
CTRL+SHIFT+Home Selects text from the insertion point to the beginning of the

document.
CTRL+SHIFT+End Selects text from the insertion point to the end of the

document.
Help Keys
Key(s) Function
F1 WinEdit Help Index
Shift+F1* Extended Help (Keyword Help)
*The cursor needs to be positioned on the WINSDK function, message or data structure
name when pressing SHIFT+F1.
Tabs
Press the Tab key to insert a number of spaces and bring the insertion point to the next tab
stop.    The number of spaces inserted when the tab key is pressed is configurable in File
Preferences (choose any value from 1 to 12).    For example if the "Tab Size" is set to 3 in File
Preferences, pressing the Tab key will advance the cursor three spaces to the right.
The SHIFT+Tab key combination moves the current position back to the previous tab stop (to
the left).    For example if the "Tab Size" is set to 3 in File Preferences, pressing the
SHIFT+Tab key combination will move the cursor three spaces/positions to the left.

If more than one line is selected, the Tab and SHIFT+Tab keys will shift every line in the
selection forwards (Tab) or backwards (SHIFT+Tab) by one tab stop.
Mouse Operations
Click the Left mouse button on Control Bar along the top of the WinEdit screen and drag your
mouse to "tear" the Control Bar from the top of the window.    The Control Bar can be resized
or moved anywhere on the screen.    See Control Bar for more information.
Click the Right mouse button anywhere on the document window and a Popup menu will
appear with a number of commands (such as Open, Find, Save and Next Error).
Hold the SHIFT key and click the Right mouse button on any Windows SDK function,
message, or data structure name and WinEdit will access the SDKWIN.HLP topic for that
item.

Double click the Left mouse button over a word to select the word.
Double click the Left mouse on message area of the status bar (the area to the right of the
INS/OVR indicator) to jump to the Next Error message.
Double click the Left mouse button on word "Line" in the status bar to bring up the Goto to
Line box.   
Double click the Left mouse button on "INS" or "OVR" in the status bar to toggle between
insert and overtype mode.
Running Multiple Instances of WinEdit
When starting a new copy of WinEdit, the active copy will be reactivated.    If an associated
file is double clicked, the active copy will load that file.    WinEdit will only allow a single
instance, unless the following entry is added to the WINEDIT.INI file:

MULTIPLEINST=1
The WINEDIT.INI file is a configuration file located in your Windows directory.
Related Topics:
WinEdit Configuration Files

WinEdit Menus
To get help on a particular menu, choose the appropriate top level menu title:

File Menu
Edit Menu
Search Menu
Project Menu
Macro Menu
Utility Menu
Window Menu

WinEdit Procedures
Changing Printers and Printer Options
Compiling (Running other programs)
Control Bar
Customizing WinEdit's Error Parsing
Editing Text
Working With Multiple Documents
Extended Help
Finding Text
Key Assignments
Printing Documents
Saving Documents
Setting Preferences
Setting Margins,Headers and Footers
Syntax coloring
Undo and Redo
Using Regular Expressions
Windows 3.1 Support

File Menu Commands
New
Opens a new untitled document window.    Existing documents will not be closed when
opening a new document.
Open...
Opens a new window with the contents of an existing document/file.
WinEdit can open an ASCII text file as large as available Windows memory.    Select the
appropriate drive and directory, select a file to open and choose the OK button.    The default
directory for the File Open command is set in the Project Management dialog (choose
Configure from the Project menu).    Once a file is opened, the full path and filename is
displayed in the caption bar of the window.
Merge...
To merge in the contents of another file into the active windows/document, position your
cursor at the location where you would like the text from another file to appear.    Choose
Merge from the File menu, select a filename and choose the OK button to merge in the text. 
WinEdit will merge the contents of the file you selected starting on the line just below your
insertion point.
Previous Files...
Choose Previous Files to quickly open a file that you previously edited.    WinEdit remembers
the last 20 files that you have had open and lists these files in the Reopen File dialog.   
Double click on a filename in the list box or select the file and choose the OK button to open
the file.    If the you wish to open is not listed, choose the Open Now button to access the
standard File Open dialog.
Difference...
This menu item launches WEDIFF, a file differencing utility.
Close
Closes the active document window.    If the document has unsaved changes, you will be
asked to save the file before closing the window.
Save
Saves the contents of the current window to disk.    If the document is UNTITLED, WinEdit
prompts you for a document name.
Save As...
Choose the Save As option to save the contents of the active window to a new or different
filename.
Print...
Prints the current document.
Page Setup...
Allows you to set the margins, header and/or footer text, select a printer font, and choose a
page layout (one portrait page of text per page or two pages in a landscape orientation).
Printer Setup...
Allows you to choose a printer and to access printer options.
Preferences...

Key Assignments
Allows you to redefine the shortcut keys used in WinEdit.
Related Topics:
WinEdit Configuration Files

Exit
Closes all open windows and exits the WinEdit program.    If there are any unsaved files,
WinEdit prompts you to save each file before exiting.    If you intend to close all of the open
windows/documents and not exit WinEdit, then choose Close All from the Window menu.

Edit Menu Commands
Undo
Allows you to "undo" previous editing actions.    WinEdit can undo the following edits:

Inserting a character.
Deleting a character.
Cutting a selection.
Pasting a selection.

WinEdit can undo the last 2000 editing actions.    Press CTRL+Z to undo the last editing
action.
Redo
Allows you to reverse any Undo command.    If you undo an editing action by mistake, you
can "redo" the edit.    Press SHIFT+CTRL+Z to redo the last editing action.
Cut
Removes the current selection (highlighted text) from the document and places it on the
Windows clipboard.    You can then paste the contents of the clipboard at another position in
the document, into a new document, or into another Windows application.
Copy
Places a copy of the current selection (highlighted text) on the Windows clipboard without
removing it from the document.    You can then paste the contents of the clipboard at
another position in the document, into a new document, or into another Windows
application.
Paste
Inserts the text from the Windows clipboard into the document at the current insertion point.
Clear
Removes the current selection from the document without changing the contents of the
clipboard.    If there is no selection, the character to the right of the insertion point is deleted.
Insert Mode
When Insert Mode is selected from the Edit menu, text is inserted at the current insertion
position (if there is text to the right of the insertion position the text is pushed to the right as
you insert text).    When Insert Mode is not selected, WinEdit is in "Overtype" mode.    When
in Overtype mode, text to the right of the insertion position is overwritten with the new text
that is typed.    The status line at the bottom of the WinEdit screen, indicates the current
editing status:

OVR - Overtype is active
INS - Insert mode is active

The Insert or INS key toggles the editing mode from OVR to INS and back.
Auto Indent
With Autoindent enabled, a new line is indented the same number of spaces as the line
directly above it.
Column Block
With Column Block enabled, mouse selections are made by column rather than inclusively
from the starting point.
Select All
Selects all of the text in the document window.

Search Menu Commands
Find...
Searches for text in a document.
You can specify these options:
* Find Type the text you want to find.
* Match Upper/Lower Case Select this box to match the upper and lower case exactly.
* Regular Expressions Select this box to use regular expressions.
* Forward Search forward in the document starting at the insertion point.
* Backward Search backward in the document starting at the insertion

point.
Repeat Last Find
Allows you to repeat the last search using the same options as the previous search, without
opening the Find dialog box again.    The quick key combination to repeat the last search/find
is CTRL+F5.
Change...
Searches for text within a document and replaces the found text with text you specify
(essentially a search and replace function).
You can specify the following options:
* Find Type the text you want to find in the document.
* Replace with Type the text you want to insert in place of the found text.
* Match case Select this box to match the upper and lower case exactly.
* Regular Expressions Select this box to use regular expressions.
* Search backwards Search backward through the document starting at the insertion

point.
* Confirm before changing When the search text is found, you will be asked if you want to

change the occurrence with the replacement text (choose Yes,
No or Cancel).

* Change All When this option is selected, WinEdit will start at the current
cursor position and search the entire document.    If the
"Confirm before changing" box is selected, you will be asked if
you want to change the occurrence with the replacement text
(choose Yes, No or Cancel).

Next Error
Prev Error
If any warning or error messages have been captured from the output of one of the Project
Menu items, the Next and Prev Error menu selections allow you to review the error messages
and the corresponding source code. Double clicking with the mouse on message area of the
status bar (the area to the right of the INS/OVR indicator) is equivalent to choosing Next
Error from the Search menu.
Find Matching Brace
To assist balancing braces in source code, place the cursor on a brace or parenthesis and
use this command.    The cursor will be moved to the matching brace or parenthesis.
View Compiler Output
If any of the options in the Project Management dialog (choose Configure... from the Project
menu) were set to "capture output", the View Compiler Output command will open a new
document window with the contents of the captured output file.
Go to line...

Choose this menu item to jump to a particular line number in your document.    After
choosing "Go to line", type the appropriate line number in the "Go to line" box on the status
bar.    Press the Enter key and WinEdit will accept the number and move the cursor to the
beginning of the indicated line.    By default the current line number is displayed in the "Go
to line" box on the status bar.    There are three ways to access the "Goto box" on the status
bar:

Press ALT+G on the keyboard.
Double click on the line and column text on the status bar.
Choose "Go to line..." from the Search menu.

Related Topic:
Using Regular Expressions

Project Menu Commands [Standard]
The commands on this menu allow you to run other programs from within WinEdit.    Before
compiling your program choose the Configure menu command to enter the necessary
commands to run the program/compiler.    Select the Capture Output box and WinEdit will
run the program you configure and save its output (choose View Compiler Output from the
Search menu to view compiler errors).    When the compilation (Build or Rebuild) finishes,
WinEdit will ask if you wish to review any warning or error messages, along with the
corresponding source code.    You can use the following placeholders to define project
options:

%f = file name
%n = base name with no extension
%e = file extension only

Examples:

Compile command: tee.com cl -c -AM -W4 -Zps -Od -DNOCOMM %f
Make command: tee.com nmake.com %n
Rebuild command: tee.com nmake.com /a %n
Debug command: cvw %n
Execute command: %n

TEE.COM is included with WinEdit and is the DOS equivalent of the UNIX TEE.    WinEdit
uses TEE.COM to redirect the stdout and stderr to a file while also echoing the information
to the screen.

Note: WinEdit constructs a batch file to execute from DOS when you choose to capture
output.    For this reason, when running a Windows application from the Run menu, do not
choose to capture the output.
Related Topics:
WinEdit Project Files
Compiling (Running other programs)
Customizing WinEdit's Error Parsing
WinEdit Configuration Files

Macro Menu Commands
The macro menu includes a macro recorder (Record Macro) and a listing of your recorded
macros.    To turn on the macro recorder press Ctrl+R from the keyboard or choose Record
Macro from the Macro menu.    The text "Recording macro" text appears in the lower right
corner of the status bar.    While the recorder is "on", WinEdit will record your keystrokes so
that they can later be assigned to a key for quick playback.    To turn off the recorder once
your macro is complete, choose Record Macro again from the Macro menu or press Ctrl+R.
In the Lite and Standard versions of WinEdit, the recorded macros cannot be edited.    You
will be prompted for a name for the newly recorded macro.    Choose a name in the format
MACROx.MAC, where 'x' is a digit from 0 to 9.
In the Pro version of WinEdit, macros are recorded as WIL scripts.    Once the recorder is
turned off, the recorded macro script will be opened in a new document window.    The
proposed filename is MACROx.MAC.    The default MACRO.MNU script file for the Macro Menu
looks for script files named MACROx.MAC, where 'x' is a digit from 0 to 9.    To use your
recorded macro with the default menu, choose File Save As to save this script, replacing the
'x' in the name with a digit from 0 to 9.    Alternately, you can give the recorded WIL script
any valid filename you wish and edit the MACRO.MNU file to reflect the chosen name.
Example of a recorded macro to delete the current line:
1. Turn on the macro recorder by pressing Ctrl+R or choose "Record Macro" from the Macro

menu.
2. Press the Home key on the keyboard to move to the beginning of the line.
3. Press SHIFT+DOWN to highlight from the beginning of the line to the beginning of the

next line.
4. Press the Del or Delete key.
5. Choose "Record Macro" from the Macro menu or press Ctrl+R.
6. Save the script file as MACRO1.MAC.
8. Drop down the macro menu (ALT+M) and choose "1.    Macro 1" to run the newly added

macro.

Window Menu Commands
New
Choose New to open a second view of the current window.
Tile
Choose Tile from the Windows menu to arrange all of the open windows on the screen so
that a portion of each windows can be seen.
Cascade
Choose Cascade to arrange all of the open windows in a stack.    When this is done the title
bar for each window is visible so that the window can be made active by clicking on the title
bar.     
Next
Choose Next to change the active window to the next open document window.     
Arrange Icons
WinEdit windows that have been minimized appear at the bottom of the screen as an icon.   
Arrange Icons will place the document window icons along the bottom of the window in rows
left to right.
Close All
Closes all open document windows.    If changes have been made to a document since it was
last saved, you will be prompted to save changes before WinEdit closes the file.
Document Names
Each open window is listed by name at the bottom of the Window menu.    Choose a window
name and the active window will change so that the selected window will become the active
document window.

Utility Menu Commands [Professional]
The Utility Menu is a custom menu created with WIL (Windows Interface Language)
commands.    For complete help on using the WIL language, consult the Windows Interface
Language Reference Manual or the WIL.HLP help file.
The WIL language menu script that makes up the Utility Menu is contained in the file
WINEDIT.MNU.    To edit this file and thus edit the Utility Menu, choose "Edit Utility Menu"
from the Utility Menu.   
The standard WinEdit Utility Menu has the following commands:
Edit Utility Menu
Choose this menu item to customize the Utility Menu.    WinEdit will load the file WINEDIT.MNU in a
document window for editing.
Read Error File
Choose this menu item to view compiler output.    WinEdit will load the file EDOUT in a document window
for editing.
Choose this
Edit Macro Menu
Choose this menu item to customize the Macro Menu.    WinEdit will load the file WINEDIT.MAC in a
document window for editing.
Key Word Help
Choose this menu item to access language specific help for the word at the cursor.    This menu item calls
a procedure in the ascii file WWWEDIT.DLL.
Insert Block
Choose this menu item to insert C or WIL language programming constructs, including If-Else, Switch,
While, Comment block, and Comment SUPER block.
Load Help File
Choose this menu item to choose from a list of Windows help files to load.
Open highlighted file
If the cursor is placed on the name of a file, such as an #include directive, this menu item will load that
file.
Delete to end of word
Deletes all characters from the current cursor position up to the next white space character.
Generate C Tags
Choose this menu item to execute the included TAGS.EXE program to index C source code.
Go to tag
Choose this menu item to jump to a definition or reference of a C language item indexed with the
TAGS.EXE program.
Grep
Choose this menu item to execute FGREP.COM, a multiple file search program.    FGREP.COM can be
found on Compuserve, our BBS, or at many internet FTP sites.
Toggle case
Choose this menu item to change the case of the currently highlighted text.
Version Control
This menu item is normally disabled.    If you have a version control system, uncomment the commands in
WINEDIT.MNU by deleting the semicolon at the beginning of each line.
Utilities
This popout menu has a selection of disk and clipboard utilities written with the WIL language.
Accessories   

This popout menu has a selection of Windows utility programs.
System Information
Choose this menu item to display statistics about the current environment.
 Interactive Execution
Choose this menu item to interactively enter WIL commands.
 Run a WIL Script File
If the current document is a WIL script file, this menu item will execute that script.

Related Topic:
WIL Commands

Changing Printers and Printer Options
Select Printer Setup from the File menu to change settings in the printer setup dialog for
your installed Windows printer drivers.    Select a printer driver and choose the Setup button
to access the printer driver options.
Select Page Setup from the File menu to change the following WinEdit page settings:

Margins
Header and/or footer text
Printer font
Page layout (one or two pages up)

WinEdit will remember your page settings from session to session.
Related Topics:
Printing Documents
Setting Margins, Headers and Footers

Compiling (Running other programs) [Standard]
The first five commands on the Project menu are user-configurable commands to execute
another program.    You may configure these commands to execute any .EXE    or .BAT
program by typing the command text in the appropriate Configure... edit box..
For example a sample compile line may read:
tee.com cl -c -AM -W4 -Zps -Od -DNOCOMM %f
If the program supports DOS redirection (as most compilers and linkers do) you can select
the Capture Output box to have WinEdit capture the program's output in a file.    When the
program has executed, WinEdit will allow you to review any messages generated, along with
the corresponding source code.
The following wildcards are provided so that filenames in the Project Management dialog do
not need to be changed when compiling different files:

%f = file name
%n = base name, no extension
%e = file extension only

If you select the Capture Output box, WinEdit will run the program you configure and save its
output.    When the program finishes, WinEdit will ask if you wish to review any warning or
error messages, along with the corresponding source code.   
WinEdit constructs a batch file to execute from DOS when you choose to capture output.   
For this reason, when running a Windows application from the Run menu, do not choose to
capture the output.    In this case, just indicate the EXE to run in the Execute command edit
box (such as Cardfile).    To run the exe listed in the Execute command edit box, do one of the
following:
1. Choose the traffic light button on the Control Bar.
2. Press ALT+F7 from the keyboard.
3. Choose Execute from the Project menu.

Related Topics:
WinEdit Project Files
Project Menu Commands
WinEdit Configuration Files
Customizing WinEdit's Error Parsing

Control Bar
The Control Bar allows you to access some frequently used commands by clicking on an icon
button along the top of the window.    The function of the buttons left to right is as follows:
Icon Buttons

Access the File Open dialog.

Saves the contents of the document window to disk.

Reopen a file from a listing of the last open files.

Prints the contents of the document window.

Restores the previous editing action.

Restores the previous undo action.

Cuts your selected text to the clipboard.

Copy your selected text to the clipboard.

Pastes the contents of the clipboard at the cursor location.

Finds specified text in the document.

Finds text in the document using the previously entered search string.

Allows you to change text (search and replace).

Compile. [Standard]

Make. [Standard]

Rebuild.    (Visible only on SuperVGA or above resolution displays)

Debug. [Standard]

Executes your program from WinEdit. [Standard]

Previous Error. [Standard]

Next Error. [Standard]

Keyword Help (Extended Help).
The Control Bar along the top of the WinEdit screen can be resized and repositioned
anywhere on the screen.    Click the left mouse button on the Control Bar and pull downward
to "tear" the Control Bar from the top of the window (the mouse cursor will change to a box
with the text TEAR).    Let go of the mouse button and the Control Bar is now floating on top
of the WinEdit screen.    Position your mouse over the edge of the bar and you can resize the
bar just as you can document windows.    The Control Bar can be docked along any window
edge.    So if you'd like you can "dock" the control bar on the left of the WinEdit window.    To
dock the bar, click in the middle of the Control Bar and move your cursor to the middle of
the top, left, right or bottom window edge.    Move your mouse cursor until the cursor
changes from "TEAR" to "DOCK".    Once your cursor reads "DOCK" release the left mouse
button to dock the Control Bar along the window edge.
You can turn the Control Bar on or off at any time from the File Preferences menu (mark or
unmark the Show Control Bar check box).

Customizing WinEdit's Error Parsing
WinEdit can be configured for most major compilers by choosing a compiler from the combo
box in the Project.Configure dialog.    If your compiler is listed, WinEdit will be able to monitor
compiler output and highlight in the source code any warnings or errors that occured during
a compile.

If your compiler is not listed, you may configure WinEdit for your compiler by editing the
ERRORFORMAT, ERRORORDER, and ERRORTEXT entries in the Project file (DEFAULT.WPJ by
default).   

ERRORORDER is the order that the following items can be found in the string:    File name,
Line number, and Error text.   

ERRORTEXT is the actual keyword or words that WinEdit can use to classify a line of output
as an error. In most cases this will be error and warning.

The ERRORFORMAT entry is a scanf-formatted string which tells WinEdit how to break a line
of the compiler's output into chunks which include the filename, line number and error
description.

The most basic format specifiers are %s and %d.    %s reads all characters up to the next
white space character.    %d reads all numeric characters up to the next white space
character.

To read strings not delimited by space characters, a set of characters in brackets ([]) can be
substituted for the s (string) type character. The corresponding input field is read up to the
first character that does not appear in the bracketed character set. If the first character in
the set is a caret (^), the effect is reversed: the input field is read up to the first character
that does appear in the rest of the character set.

The scanf function scans each input field, character by character. It may stop reading a
particular input field before it reaches a white space character for a variety of reasons:

the specified width has been reached;
the next character cannot be converted as specified;
the next character conflicts with a character in the control string that it is supposed
to match; or
the next character fails to appear in a given character set.

For whatever reason, when scanf stops reading an input field, the next input field is
considered to begin at the first unread character. The conflicting character, if there is one, is
considered unread and is the first character of the next input field.

Example
Sample compiler output:

generic.c(50) : warning C1022: signed/unsigned mismatch

The relevant information is embedded in the string as follows:
<filename>(<line>) : <message>

The corresponding ERRORFORMAT format string for this compiler output is:
%[^(](%[0-9]) : %[^~]

Including the literal characters in the format string, this example has eight separate format

specifiers:

Format Explanation
%[^(] Uses the caret character (^) to read any character in the string EXCEPT a left

parenthesis character.    When the left parenthesis character is encountered,
reading stops and the result is stored as the first parsed field.    This will
extract the filename from the string.

(Read and discard the left parenthesis character.

%[0-9] Read all numeric characters 0 through 9.    When a non-numeric character is
encountered, reading stops and the result is stored as the second parsed field.
This will extract the line number from the string.

) Read and discard the right parenthesis character.
<space> Read and discard the space character.
: Read and discard the colon character.
<space> Read and discard the space character.

%[^~] Uses the caret character (^) to read any character in the string EXCEPT a tilde
(~).    Assuming there are no tilde characters in the string, reading will
continue until the end of the string is reached, and the result is stored as the
third parsed field.    This will extract the remainder of the string for the
message text.

Sample Error Format Entries
MICROSOFT
ZORTECH
Format: <filename>(<line>) : warning|error <errno>: <message>

ERRORFORMAT="%[^(](%[0-9]) : %[^~]"
ERRORORDER=1,2,3
ERRORTEXT=warning,error

BORLAND C++
Format: Error <filename> <line>: <message>

ERRORFORMAT=%s%s%[^:]:%[^~]
ERRORORDER=2,3,4
ERRORTEXT=Warning,Error

BORLAND TURBO ASSEMBLER
Format: **Error** <filename>(<line>) <message>

ERRORFORMAT=%s %[^(](%[0-9])%[^~]
ERRORORDER=2,3,4
ERRORTEXT=Warning,Error

BORLAND TURBO PASCAL
Format: <filename>(<line>): Error <errno>: <message>

ERRORFORMAT=%[^(](%[0-9]): %[^~]
ERRORORDER=1,2,3
ERRORTEXT=Error

CLIPPER
Format: <sourcefile>(<line number>) "Error"|"Warning" <errno>    <message>

ERRORFORMAT=%[^(](%[0-9]) %[^~]
ERRORORDER=1,2,3
ERRORTEXT=Error,Warning

Related Topics:
WinEdit Project Files
Project Menu Commands
WinEdit Configuration Files

Editing Text
To "copy and paste", or "cut and paste" the selected text, do the following:
1. Select the text to copy or cut.
2. Choose Copy from the Edit menu to copy the selected text to the clipboard.    Or choose

Cut from the Edit menu to cut the text to the clipboard.
3. Move the insertion point where you want the text to appear.    Or if you want to replace a

section of text with the contents of the clipboard, select the text in the document that
you want replaced.

4. Choose Paste from the Edit menu.
Editing Shortcuts:

Keypad + (Plus)
Copies the current line to the clipboard if nothing is selected or if there is a selection, the +
key functions the same as Edit Copy (CTRL+INS).

Keypad - (Minus)
Cuts the current line to the clipboard if nothing is selected or if there is a selection, the -
key is the same as Edit Cut (SHIFT+DEL).

Deleting Text
To delete text without sending it to the Windows clipboard, do the following:
1. Select the text to delete.
2. Choose Clear from the Edit menu or press the Del key from the keyboard.
If no text is selected, Edit Clear will delete the character to the right of the cursor.    To delete
characters to the left of the cursor use the Backspace key.
Tab and SHIFT Tab
Press the Tab key to insert a number of spaces and bring the cursor to the next tab stop.   
The number of spaces inserted when the tab key is pressed is configurable in File
Preferences (choose any value from 1 to 12).    For example if the "Tab Size" is set to 3 in File
Preferences, pressing the Tab key will advance the cursor three spaces to the right.
The SHIFT+Tab key combination moves the current position back to the previous tab stop (to
the left).    For example if the "Tab Size" is set to 3 in File Preferences, pressing the
SHIFT+Tab key combination will move the cursor three spaces/positions to the left.
If more than one line is selected, the Tab and SHIFT+Tab keys will shift every line in the
selection forwards (Tab) or backwards (SHIFT+Tab) by one tab stop.

Working With Multiple Documents
WinEdit allows you to open multiple documents and switch back and forth from document to
document.    To open a new document, choose New from the File menu and a new, untitled
document window will appear.    To load an existing document/file, choose Open from the File
menu.    Chose the file type you would like to open from the list box labeled "List Files of
Type:".
There are selections for source files (*.c;*.h;*.rc;*.def), text files (*.txt) and all files regardless
of file extensions (*.*).    Change to the appropriate drive and directory and double click on
the file to open or select the file name and choose the OK button.
Once you have several windows/files open, you can view a list of the open windows by
pressing ALT+W.    The open files (drives and subdirectory paths included) are listed at the
bottom of the Window menu.    The active window is indicated by the check mark before the
file name.    Choose any of the windows listed to change the active window.
Additionally, Tile and Cascade are available from the Windows menu to change the
arrangement of the windows.    Choose Cascade to arrange all of the open windows in a
stack.    When this is done the title bar for each window is visible so that the window can be
made active by clicking on the title bar.    Choose Tile from the Windows menu to arrange all
of the open windows on the screen so that a portion of each windows can be seen.
All of the document windows can also be sized and minimized.    To size the document
window, move the mouse over a window edge so that the mouse cursor changes to a double
sided arrow.    Now, click the drag the mouse to change the size of the window.    To minimize
a document window, click on the down arrow in the upper right corner of the document
window.    The windows will appear at the bottom of the WinEdit screen as a icon (appears as
a white piece of paper).    To restore the document window back to its original size, double
click on the icon.

Extended Help [Standard]
Press SHIFT+F1 or hold the SHIFT key and click the Right mouse button on a C language or
Windows SDK function, message, or data structure name and WinEdit will access the help
topic for that item.
WinEdit is preconfigured to access help for Windows SDK, Microsoft C and C++, and WIL or
WinEdit script language keywords.

Related Topics:
WinEdit Configuration Files

Finding Text
Choose Find from the Search menu to search for text within the active document.
You can specify the following options:
* Find Type the text you want to find.
* Match Upper/Lower Case Select this box to match the upper and lower case exactly.
* Regular Expressions Select this box to use regular expressions.
* Forward Search forward in the document starting at the insertion point.
* Backward Search backward in the document starting at the insertion

point.
Choose Repeat Last Find (or press CTRL+F5) to repeat the last search using the same
options as the previous search, without opening the Find dialog box again.
Choose Change from the Search menu to search for text in a document and replace the
found text with text you specify.
You can specify the following options:
* Find Type the text you want to find in the document.
* Replace with Type the text you want to insert in place of the found text.
* Match case Select this box to match the upper and lower case exactly.
* Regular Expressions Select this box to use regular expressions.
* Search backwards Search backward through the document starting at the insertion

point.
* Confirm before changing When the search text is found, you will be asked if you want to

change the occurrence with the replacement text (choose Yes,
No or Cancel).

* Change All When this option is selected, WinEdit will start at the current
cursor position and search the entire document.    If the
"Confirm before changing" box is selected, you will be asked if
you want to change the occurrence with the replacement text
(choose Yes, No or Cancel).

Related Topic:
Using Regular Expressions

Key Assignments
Use this dialog box to modify key assignments for commands.
Shortcut Key
Select the keys you want to assign to the selected command.
Alt Select this box to make the ALT key part of a shortcut key combination.
Shift Select this box to make the SHIFT key part of a shortcut key combination.
Ctrl Select this box to make the CTRL key part of a shortcut key combination.
Key Select the key you want to assign as a shortcut key. Note: Some keys do not appear
because they cannot be assigned.
Currently If there is an assignment for the currently selected keys, the command name
of the current assignment is displayed.
Commands
Select the command to which you want to assign keys.
Current Keys For <command>
Displays the existing key assignments for the command selected in the Commands listbox.
Add
Adds the key assignment displayed under Shortcut Key to the selected command.
Delete
Deletes the key assignment you select in the Current Keys For box.
Reset
Restores the original WinEdit key assignments to commands.

Related Topics:
WinEdit Configuration Files

Using Regular Expressions
A regular expression is a search or replace string that uses special characters to match text
patterns.    WinEdit supports UNIX style regular expressions.
When WinEdit conducts a search using regular expressions, it must check character by
character in your text.    For this reason, searches using regular expressions are slower than
regular searches.
The following table describes the regular expression characters recognized by WinEdit.
Expression Description

\ Escape. WinEdit will ignore any special meaning of the character that follows
the Escape expression.    Use the Escape if you need to search for a literal
character that matches a regular expression character.

. Wild Card. Matches any character.    For example, the expression 'X.X' will
match 'XaX', 'XbX, and 'XcX', but not 'XaaX'.

^ Beginning Of Line. The expression matches only if it occurs at the beginning
of a line.    For example, '^for' matches the text 'for' only when it occurs at
the beginning of a line.

$ End Of Line. The expression matches only if it occurs at the end of a line.   
For example, '(void)$' matches the text '(void)' only when it occurs at the
end of a line.

[] Character Class. The expression matches any character in the class
specified within the brackets.    Use a dash (-) to specify a range of character
values. For example, '[a-zA-Z0-9]' matches any letter or number, and '[xyz]'
matches 'x', 'y', or 'z'.

[^] Inverse Class. The expression matches any character not specified in the
class.    For example, '[^a-zA-Z]' matches any character that is not a letter.

* Repeat Operator. Matches zero or more occurrences of the character that
precedes the '*'.    For example, 'XY*X' matches 'XX', 'XYX', and 'XYYX.

+ Repeat Operator. Matches one or more occurrences of the character that
precedes the '+'.    For example, 'XY+X' matches 'XYX' and 'XYYX, but not
'XX'.

Related Topic:
Finding Text

Windows 3.1 Support
"Drag and Drop"
WinEdit is fully compatible with Windows version 3.1.    WinEdit version 2.0 adds support for
drag and drop from File Manager.    To open files in WinEdit, simply drag and drop one or
more files from the Windows File Manager onto WinEdit.    Drag and drop from File Manager is
functional when WinEdit is either minimized or maximized.

"Sounds"
Whenever a Message Box comes up, WinEdit plays the WAVE file corresponding to the
Message Box icon under Multimedia Windows or the Asterisk event under Windows 3.1.   
Under Windows Win 3.0 the standard beep will play.    "Warning Sounds" is an option in File
Preferences dialog and can be disabled if you'd like.    There is also a WinEdit Startup event
that can be configured for any WAVE file when operating under Windows 3.1 or Multimedia
Windows (sound card required).

Printing Documents
Choose Print from the File menu to send the text of the current document to the active
printer.    All print options such as the layout (one up portrait printing or two page landscape
printing) and printer font, are set in the Page Setup dialog (accessible from the File menu).   
The default printer selection is made in the Windows Control Panel Printers section.

Related Topics:
Changing Printers and Printer Options
Setting Margins, Headers and Footers

Saving Documents
To save a document to disk under the current file name (the filename appears in the title bar
for the document window), choose Save from the File menu.    If the file has not been saved
before, WinEdit will prompt for a file name.    To save a document to a new name and/or
location, choose Save As from the File menu.

Backup Files
By default, when a file is saved in WinEdit, the previous version of the document is renamed
with a .BAK file extension.    For example, if you make changes to FILENAME.TXT and choose
to save the file, the previous version of the file is renamed to FILENAME.BAK while the new
changes are saved to FILENAME.TXT.    The backup file (FILENAME.BAK) is saved to the same
directory as FILENAME.TXT.
You can customize the backup file specification with the Preferences... command on the File
menu.

Setting Preferences
Use this dialog to configure WinEdits default settings.
Screen Font
Chooses a font to use for displaying all document windows.
File filters...
Allows you to edit the file masks used in the File Open and File Save As dialog boxes.   
Clicking on one of the existing entries in the list boxes will copy the text to the edit boxes.   
You can also enter a new description and file mask directly in the edit boxes.    The Add and
Remove buttons add or remove the highlighted entries from the list boxes
Backup specification
Determines where or whether WinEdit will make a backup copy of saved files.    The default
specification is '%n.bak'.    %n is a placeholder for the base file name.    This will save backup
files to the same directory as the original file.
To prevent WinEdit from making backup files, delete the text from this edit box.    To force all
backup files into one directory, add a directory to the specification.    For example, to always
save all backup files in the C:\TEMP directory, enter 'C:\TEMP\%n.BAK' as the backup
specification.    To save backup files in the same directory as the original file, but with an
extension of 'XXX', enter '%n.XXX'.
Configuration
WinEdit is licensed in three different versions.    Some default settings and features differ.   
You should choose the version level which matches your license level, unless you wish to
evaluate features of other levels.
Reopen last file at startup
If this option is selected, the last file open in WinEdit will be opened automatically the next
time WinEdit is started.
Zoom window at startup
Determines whether or not the first document opened will be maximized.
Show Control Bar
Toggles the display of the Control Bar .
Show Status Bar
Toggles the display of the status bar.
Show Horizontal Scrollbar
Toggles the display of the horizontal scroll bar.
Warning sounds
Plays the WAVE file corresponding to the shown Message Box icon.
Autosave
Enables Autosave of modified files.    WinEdit will save any modified files in temporary files at
the interval set in this edit box and automatically reload them at startup if encountered.
Tab Size
Allows you to set the size in spaces that will be inserted each time you press the tab key.   
Values range from one space to twelve spaces per tab.

Language

Depending on your location, your copy of WinEdit may be configured for more than one
language.    Choosing a language from this list will change the menu and dialog text to the
listed language.

Setting Margins, Headers and Footers
Headers and Footers
Choose Page Setup from the File menu to configure header and footer text.    Type the text
you wish to appear at the top and bottom of each page.
You can use the following special characters in headers and footers:
* %f The document name will appear.
* %d The date and time of the printout will appear.
* %p The page number will appear.
The default header text is "%f - %d" or Document Name - Date and Time of the printout.
The default footer text is "Page %p" or Page 1.
Changes made to the header and footer text are remembered for the next session of
WinEdit.
Margins
Choose Page Setup from the File menu to change the margins used for WinEdit's printouts. 
You can enter the measurements for top, bottom, left, and right margins.    The margin
values are either in inches or centimeters, depending upon the Measurement setting in the
Windows Control Panel International section/icon.
Related Topics:
Changing Printers and Printer Options
Printing Documents

Syntax Coloring
WinEdit can be configured to highlight language specific keyword, comments, and string literals.    The
default configuration enables syntax coloring for C, C++, WIL language, ASM, Basic, DCL, Lisp, Modula2
and xBase source files.    The source files colored and the colors used can be configured by editing the
WECHROMA.INI file and the corresponding language source INI file.    WECHROMA.INI holds the
general configuration information for all languages, and for each language configured there is a separate
INI file which lists the keywords for that language.

To add syntax coloring for a language not already included, you would first modify the WECHROMA.INI
file to add a mapping for the new file extension.    See the [EXTENSIONS] documentation in this section
for more information.Then you would create an INI file for that specific language which would hold the
configuration section along with the keywords.

WECHROMA.INI
This configuration file is used to hold information used for syntax coloring of source files.   
WECHROMA.INI defines the extensions used and the colors available for all configured languages, and
names the configuration file which holds keywords for each language defined.

[EXTENSIONS]
The entries in the [EXTENSIONS] section of WECHROMA.INI map a file extension to a configuration
section.   

<FileExtension>=<section>
The purpose of the entry is to allow several file extensions to be mapped to one configuration section.   
For example, entries mapping files with the extensions "WBT" and "MNU" to a configuration section
named "WIL" would be as follows:

[EXTENSIONS]
WBT=WIL
MNU=WIL

Any name can be used for the <section> entry.    This name is used also to point to the keyword
configuration file.    In this example, the keyword configuration file for this mapping would be WIL.INI.

RGB Values
The WECHROMA.INI file also contains a reference list of the RGB values which can be used for syntax
coloring.

The LANGUAGE.INI File
For each language configured in WECHROMA.INI, there is a corresponding language specific file which
contains a list of the keywords for that language.    In the examples below, the name of the particular
language configuration is noted with the tag <section>.    This <section> name is the same as the
WECHROMA.INI entry listed under {EXTENSIONS].

There are two main sections of this language specific file, [<section>CONFIG] and [<section>]:

[<section>CONFIG]
This section in the INI file is used to configure syntax coloring for a defined set of file extensions.    The
<section> part of the name must match an entry in the [EXTENSIONS] section of WECHROMA.INI.    For
example, if entries in the [EXTENSIONS] section mapped files with the extension "WBT" and "MNU" to
"WIL", this section would be "[WILCONFIG]".

WinEdit can be configured to highlight language specific keyword, comments, and string
literals.    The default configuration enables syntax coloring for C, C++, and WIL language
source files.    The source files colored and the colors used can be configured by editing the

WECHROMA.INI file.
Related Topics:
WinEdit Configuration Files

Undo and Redo
Undo
Allows you to "undo" previous editing actions.    WinEdit can undo the following edits:

Inserting a character.
Deleting a character.
Cutting a selection.
Pasting a selection.

WinEdit can undo the last 2000 editing actions.    Press ALT+Backspace to undo the last
editing action or select Undo from the Edit menu.
Redo
Allows you to reverse any Undo command.    If you undo an editing action by mistake, you
can "redo" the edit.    Press CTRL+Backspace to redo the last editing action or choose Redo
from the Edit menu.

WinEdit Project Files [Standard]
Information entered into the Project Management dialog (choose Configure... from the
Project menu) can be saved in a private INI file with a .WPJ (WinEdit Project File) extension.   
Choose the Save... pushbutton to save the contents of the dialog box in a .WPJ file.    The
default save path for the WPJ files is the WinEdit directory.    After creating several project
files you can load an existing .WPJ file by clicking on the Open... pushbutton.
There are five edit boxes for your Compile, Make, Rebuild, Debug and Execute command line
information.    The following wildcards are provided so that filenames in the Project
Management dialog do not need to be changed when compiling different files:

%f = file name
%n = base name, no extension
%e = file extension only

If you select the Capture Output box, WinEdit will run the program you configure and save its
output.    When the program finishes, WinEdit will ask if you wish to review any warning or
error messages, along with the corresponding source code.    WinEdit constructs a batch file
to execute from DOS when you choose to capture output.    For this reason, when running a
Windows application from the Run menu, do not choose to capture the output.
The Project Name field can be filled with a brief description of the project.    The Working
Directory field sets the default open and save directories for your project to the path
indicated in this field.
Note: The last project file opened in WinEdit, will automatically be loaded the next time you
start WinEdit.    To change to another project file, choose Configure... from the Project menu
and choose the Open... pushbutton.
Related Topics:
WinEdit Configuration Files
Customizing WinEdit's Error Parsing

ACCELERATORS=<filename>
This entry in WINEDIT.INI specifies the name of the binary accelerator table to use.

The default value is "WINEDIT.KEY".

AUTOSAVE=<0/1>
This entry in WINEDIT.INI determines whether or not modified files will be automatically
saved periodically.

The default value is 1.

AUTOTIME=<minutes>
This entry in WINEDIT.INI specifies the interval in minutes for Autosave.

The default value is 5.

LEVEL=<0/1/2>
This entry in WINEDIT.INI determines the feature level.

0 Lite
1 Standard
2 Professional

The default value is 2. [Professional]

DOCK=<TOP/BOTTOM/LEFT/RIGHT>
This entry in WINEDIT.INI lists which side of the frame window to dock the Control Bar.

The default entry is TOP. [Control Bar docked on top]

CONTROLBAR=<0/1>
This entry in WINEDIT.INI determines whether or not the Control Bar is shown.

The default entry is 1. [Show Control Bar]

TOOLBAR=<top,left,width,height>
This entry in WINEDIT.INI lists the screen position of the Control Bar if it is floating.

The default entry is 0,0,0,0. [Control Bar is docked]

X=<top>
Y=<left>
WIDTH=<width>
HEIGHT=<height>
These entries in WINEDIT.INI list the last known screen dimensions of the main WinEdit
window at the end of the last session.

ZOOM=<0/1>
MAX=<0/1>
These entries in WINEDIT.INI list whether or not the window was maximized in the last
session. and whether the child window should be maximized at startup.

The default entry for Zoom is 0. [Not Zoomed]
The default entry for Max is 1. [Maximize Child On]

MULTIPLEINST=<0/1>
If this entry in WINEDIT.INI is 0, WinEdit limits itself to a single instance.    Double clicking on
an associated filename in File Manager will open a new document window in the currently
running instance.

If this entry is 1, multiple copies of WinEdit can be run.

The default entry is 0. [Multiple Instances Off]

WORDWRAP=<0/1>
This entry in WINEDIT.INI Determines whether or not WinEdit will automatically wrap lines as
they are typed to the right edge of the screen.

The default entry is 0. [Wordwrap Off]

INSERT=<0/1>
This entry in WINEDIT.INI determines whether WinEdit starts in Insert or Overtype mode.

The default entry is 1. [Insert On]

SCREENSIZE=<fontsize>
SCREENFONT=<fontname>
CHARSET=<0/1>
WEIGHT=<number>
ITALICS=<0/1>
These entries in WINEDIT.INI describe the screen font.

Defaults
ScreenSize=10 [size in points]
ScreenFont=Courier
Charset=0 [0=ANSI, 1=OEM]
Weight=0 [0=normal,400=Bold]
Italics=0 [0=off, 1=on

PROJECT=<filename>
This entry in WINEDIT.INI lists the pathname of the current Project file.

The default entry is DEFAULT.WPJ.

OUTPUT=<filename>
This entry in WINEDIT.INI lists the pathname used to store compiler output.    If the entry
consists of a filename only (no path) output will be written to the filename in the current
directory.    If a fully qualified pathname is listed, all output will be written to the specific
location listed.    For example, if the entry is "EDOUT", output will be written to a file named
EDOUT in the current directory.    If the entry is "C:\WINEDIT\EDOUT", output will always be
written to a file named EDOUT in the C:\WINEDIT directory.

The default entry is <WinEdit home directory>EDOUT.

LASTFILE=<filename>inilastfile
This entry in WINEDIT.INI lists the pathname of the last file edited.

There is no default value.

PROFILTERS=<filefilter string>
LITEFILTERS=<filefilter string>

These entries in WINEDIT.INI list a filter specification to be used in the File Open and File
Save As dialog boxes.    The format of the filter string is

<description>|<mask>|<description>|mask|<description>|mask|
The ProFilters entry is used for the Standard and Professional level configurations, and
LiteFilters is used for the Lite configuration.
Defaults:
ProFilters=Source Files|*.c;*.h;*.rc;*.def|Text Files|*.txt|All Files|*.*|
LiteFilters=Text Files|*.txt|INI Files|*.ini|All Files|*.*|

SOUND=<0/1>
This entry in WINEDIT.INI determines whether or not warning sounds are played at startup
and when Message Boxes are displayed.

The default entry is 0. [Sound off]

Also, an entry is written to WIN.INI to configure a new sound event for WinEdit startup.    The
default entry that is written to the [Sounds] section of WIN.INI is
"WinEdit=TADA.WAV,WinEdit Startup".

REOPEN=<0/1>
This entry in WINEDIT.INI determines whether or not WinEdit will automatically attempt to
reopen the last edited file on statup.

The default entry is 1. [Reopen on]

TABSIZE=<number>
This entry in WINEDIT.INI determines the number of spaces to insert when the Tab key is
pressed.

The default entry is 8. [TabSize 8]

SEARCH=<string>
REPLACE=<string>
CASE=<0/1>
BACKWARDS=<0/1>
CONFIRM=<0/1>
CHANGEALL=<0/1>
REGULAR=<0/1>
These entries in WINEDIT.INI are used to configure default settings for the Find and Replace
functions.

In addition, entries in the form SEARCHx=<string> and REPLACEx=<string> are used to
retain the last twenty search and replace strings.

BKDRIVE=<drive letter>
BKDIR=<pathname>
BKEXT=<extension>
These entries in WINEDIT.INI are used to configure backup file parameters.    If all three
entries are blank, no backup files are written.    If a backup file is to be written, the file name
is constructed as

[bkdrive] [bkdir] %n [bkext]

where %n is a placeholder for the base name of the original file.

Defaults
BKDRIVE= [no entry]
BKDIR= [no entry]
BKEXT=.BAK [includes period]

PRINTER=<description>
DRIVER=<name>
PORT=<port>
PRINTFONT=<fontname> [default: Courier]
SIZE=<fontsize> [default: 10]
HEADER=<string>
FOOTER=<string>
TOP=<number> [default: 720]
BOTTOM=<number> [default: 720]
LEFT=<number> [default: 720]
RIGHT=<number> [default: 720]
TWOUP=<0/1> [default: 0]
BOLD=<0/1> [default: 0]
ITALIC=<0/1> [default: 0]
UNDERLINE=<0/1> [default: 0]
These entries in WINEDIT.INI are used to configure the printer.    The entries for Top, Bottom,
Left, and Right are for the page margins, and are listed in twips. [1440 twips = one inch].

ERRORFORMAT=<format string>
ERRORORDER=<order>
ERRORTEXT=<string1,string2,string3>
These entries in the project file are used to configure the error parsing functions.

ERRORFORMAT is a scanf-formatted string which describes a compiler's error or warning
output as a series of tokens.    ERRORORDER lists the order WinEdit can expect to find the
filename, the line number, and the message text.    ERRORTEXT lists up to 3 strings which
WinEdit can use to determine whether a particular line of output should be treated as a
warning or error.

The default entries configure WinEdit for Microsoft and Zortech compiler output.    Many
other tools also use this format.

Related Topics:
Customizing WinEdit's Error Parsing

INFO=<string>
This entry in WINEDIT.INI is used to hold license information.

There is no default entry.

<FileExtension>=<section>
The entries in the [EXTENSIONS] section of WECHROMA.INI map a file extension to a
configuration section.    The purpose of the entry is to allow several file extensions to be
mapped to one configuration section.    For example, entries mapping files with the
extensions "WBT" and "MNU" to a configuration section named "WIL" would be as follows:

WBT=WIL
MNU=WIL

Any name can be used for the <section> entry.    The keywords for the configured language
are listed in a separate configuration file named <section>.INI.    In the example above, the
language specific file would be named WIL.INI.

[<section>CONFIG]
This section in the language specific INI file is used to configure syntax coloring for a defined
set of file extensions.    The <section> part of the name must match an entry in the
[EXTENSIONS] section of WECHROMA.INI.    For example, if entries in the [EXTENSIONS]
section mapped files with the extension "WBT" and "MNU" to "WIL", this section would be
"[WILCONFIG]" in a configuration file named WIL.INI.

CHROMA=<0/1>
This entry in the [<section>CONFIG] section of a language specific configuration file enables
or disables syntax coloring for a configuration section.

KEYWORD=<red, green, blue>
This entry in the [<section>CONFIG] section of a language specific configuration file defines
a color value for keywords.    If the keyword list does not include a lookup tag for a specific
color, this entry determines the keyword color.

<tag>=<red, green, blue>
This entry in the [<section>CONFIG] section of a language specific configuration file is used
to determine a specific color for a keyword.

COMMENT=<red, green, blue>
This entry in the [<section>CONFIG] section of a language specific configuration file is used
to determine a color for comments.

QUOTE=<red, green, blue>
This entry in the [<section>CONFIG] section of a language specific configuration file is used
to determine a color for string literals.

CMTSTART1=<string>
CMTEND1=<string>
CMTSTART2=<string>
CMTEND2=<string>
These entries in the [<section>CONFIG] section of a language specific configuration file are
used to define how comments in source code start and stop.    If there is an entry for
CMTSTART1 or CMTSTART2 without an entry for CMTEND1 or CMTEND2, this is taken to mean
that the comment ends at the end of the current line.    For example, C and C++ source code
entries would be:

CMTSTART1="*"
CMTEND1="*\"
CMTSTART2="\\"
CMTEND2=

Note that because CMTEND2 is blank, comments beginning with "\\" are defined to be single
line comments.

CASE=<0/1>
This entry in the [<section>CONFIG] section of a language specific configuration file enables
or disables case sensitivity when scanning for keywords.

[<section>]
This section in a language specific configuration file is used to list the keywords that should
be colored.    The name of the section must match an entry in the [EXTENSIONS] section of
WECHROMA.INI.

<Keyword>=<tag>
This entry in the [<section>] section of a language specific configuration file lists a keyword
and (optionally) a color lookup value.    In addition to listing keywords for coloring, types of
keywords can be distinguished, allowing, for example, specific colors for C, C++, and SDK
keywords.

If the <tag> value matches an entry in the [<section>CONFIG] section, that value is used
for the color of that keyword.    If no entry in [<section>CONFIG] matches the entry here, the
value for KEYWORD is used.    For example, with the following entries

lstrlen=SDK
memcpy=1
new=CPP

if there are entries in [<section>CONFIG] for SDK and CPP, "lstrlen" and "new" would be
colored according to the value for those entries.    Assuming no entry is found for 1, the value
in [<section>CONFIG] for KEYWORD would be used to color "memcpy".

CCAPT=<0/1>
MCAPT=<0/1>
BCAPT=<0/1>
DCAPT=<0/1>
RCAPT=<0/1>
These entries enable or disable output capture.    Output of compilers can be captured if the
compiler writes its output to STDOUT or STDERR.

COMPILE=<command>
This entry defines the Compile command.

The default entry is

tee.com cl -c -AM -W4 -Zps -Od %f

TEE.COM is a utility shipped with WinEdit which echoes output to the display even if it is
being redirected.    %f is a placeholder for the complete pathname of the current file being
edited.    The following placeholders can be used:

%e File extension
%f Complete file name
%n Base of file name only.

MAKE=<command>
This entry defines the Make command.

The default entry is

tee.com nmake.exe

TEE.COM is a utility shipped with WinEdit which echoes output to the display even if it is
being redirected.    With the Microsoft C compiler this command will run NMAKE, with
MAKEFILE as the make file, and will rebuild only those files changed since the last make.

REBUILD=<command>
This entry defines the Compile command.

The default entry is

tee.com nmake.exe /a

TEE.COM is a utility shipped with WinEdit which echoes output to the display even if it is
being redirected.    With the Microsoft C compiler this command will run NMAKE, with
MAKEFILE as the make file, and will rebuild all files.

DEBUG=<command>
This entry defines the Compile command.

The default entry is

cvw %n

This command will launch the CodeView debugger, passing the base name of the file being
edited.    For example, if you were editing GENERIC.C, the command would expand to

cvw GENERIC

The following placeholders can be used:

%e File extension
%f Complete file name
%n Base of file name only.

RUN=<command>
This entry defines the Compile command.

The default entry is

%n

This command will attempt to launch the executable file with the base name of the file
currently being edited.    For example, if you were editing GENERIC.C, this command would
launch GENERIC.

The following placeholders can be used:

%e File extension
%f Complete file name
%n Base of file name only.

NAME=<name>
This entry gives a descriptive name to the current project.

DIR=<path>
This entry defines a default directory for the project.    Before any of the compile commands
are executed, the current directory is changed to this path.

FILE2=<filename>
This entry (and FILE3 through FILE20) are used to remember previously opened files for this
project.

Configuration Files
WinEdit uses private configuration files to hold information which is remembered from
session to session.    With the exception of the WINEDIT.KEY binary file, the configuration files
are standard Windows INI files.    This information is furnished for completeness and for
advanced customization.    In most cases, customization should be done via the program's
dialog boxes.

WINEDIT.INI Main configuration file
WECHROMA.INI Used for syntax coloring
WEHELP.INI Used for keyword help
DEFAULT.WPJ Project management
WINEDIT.KEY Keyboard reassignments

WINEDIT.INI
This topic describes the entries in the WINEDIT.INI file.    To see the description and the
examples, click on the entry, or press TAB until the entry is highlighted and press ENTER.

[WINEDIT]
ACCELERATORS=<filename>
AUTOSAVE=<0/1>
AUTOTIME=<minutes>
BACKWARDS=<0/1>
BKDIR=<pathname>
BKDRIVE=<drive letter>
BKEXT=<extension>
BOLD=<0/1>
BOTTOM=<number>
CASE=<0/1>
CHANGEALL=<0/1>
CHARSET=<0/1>
CONFIRM=<0/1>
CONTROLBAR=<0/1>
DOCK=<TOP/BOTTOM/LEFT/RIGHT>
DRIVER=<name>
FOOTER=<string>
HEADER=<string>
HEIGHT=<height>
INFO=<string>
INSERT=<0/1>
ITALIC=<0/1>
ITALICS=<0/1>
LASTFILE=<filename>
LEFT=<number>
LEVEL=<0/1/2>
LITEFILTERS=<filefilter string>
MAX=<0/1>
OUTPUT=<filename>
PORT=<port>
PRINTER=<description>
PRINTFONT=<fontname>
PROFILTERS=<filefilter string>
PROJECT=<filename>
REGULAR=<0/1>
REOPEN=<0/1>
REPLACE=<string>
RIGHT=<number>
SCREENFONT=<fontname>
SCREENSIZE=<fontsize>
SEARCH=<string>
SIZE=<fontsize>
SOUND=<0/1>
TABSIZE=<number>
TOOLBAR=<top,left,width,height>
TOP=<number>
TWOUP=<0/1>
UNDERLINE=<0/1>
WEIGHT=<number>
WIDTH=<width>
WORDWRAP=<0/1>
X=<top>
Y=<left>
ZOOM=<0/1>

WECHROMA.INI
This topic describes the entries in the WECHROMA.INI file.    This configuration file is used to
hold information used for syntax coloring of source files.
To see the examples, click on the entry, or press TAB until the entry is highlighted and press
ENTER.

[EXTENSIONS]
<FileExtension>=<section>

[<section>CONFIG]
CHROMA=<0/1>
KEYWORD=<red, green, blue>
<tag>=<red, green, blue>
COMMENT=<red, green, blue>
QUOTE=<red, green, blue>
CMTSTART1=<string>
CMTEND1=<string>
CMTSTART2=<string>
CMTEND2=<string>
CASE=<0/1>

[<section>]
<Keyword>=<tag>

WEHELP.INI
This topic describes the entries in the WEHELP.INI file.    This file is used to hold information
used for keyword help lookups.

The EXTENSIONS section below maps the extension of the file being edited with a group of
help files to try looking up the desired keyword in.    For example, if a file "XYZ.C" is being
edited, the help files in the SDKHELP section will be checked to lookup the desired data.
[EXTENSIONS]
C=SDKHELP
WBT=WINBATCH

This section merely contains a list of possible help files the user would like presented to him. 
Edit at will.
[HELPALL]
HF1=WIN31WH.HLP
HF2=WIN31MWH.HLP
HF3=WINEDIT.HLP
HF4=WIL.HLP

The sections below are all pointed to by the EXTENSIONS section.    The format of an entry is
as follows:

HFx=<HelpFileName> <HelpFileType>

Although you may define all the types you wish, please use numbers above 99 to define
your own provate formats (WWW reserves help file types 0 thru 99.

Currently defined HelpFileTypes are:
0 Undefined
1 Quick and dirty MessageBox help.      (See SAMPHLP.WEH example)
2 Windows help file      - Use WinHelp function, pass keyword asis
3 Executable help file - (Like DOS QH.EXE)

[SDKHELP]
HF1=WIN31WH.HLP 2
HF2=WIN31MWH.HLP 2
HF3=WINEDIT.HLP 2
HF4=MSCXX.HLP 2

[WBT]
HF1=WIL.HLP 2
HF2=WINEDIT.HLP 2
HF3=FILECMDR.HLP 2

The macro code contained in WWWEDIT.DLL (a text file located in the Windows directory)
uses the information in WEHELP.INI to find an associated INI file with the extension WEH.   
This file contains a list of valid keywords.    For example, in the above example, if the file
being edited had an extension of "C", WinEdit would search for an SDK keyword in the files
WIN31WH.WEH, WIN31MWH.WEH, WINEDIT.WEH, and MSCXX.WEH, in that order.

DEFAULT.WPJ
This topic describes the entries in the DEFAULT.WPJ file.    This file is used to manage Project
information for compiling and debugging source files.
To see the description and the examples, click on the entry, or press TAB until the entry is
highlighted and press ENTER.

[PROJECT]
ERRORFORMAT=<format string>
ERRORORDER=<order>
ERRORTEXT=<string1,string2,string3>
CCAPT=<0/1>
MCAPT=<0/1>
BCAPT=<0/1>
DCAPT=<0/1>
RCAPT=<0/1>
COMPILE=<command>
MAKE=<command>
REBUILD=<command>
DEBUG=<command>
RUN=<command>
NAME=<name>
DIR=<path>
FILE2=<filename>

WINEDIT.KEY
WINEDIT.KEY is the default name for the binary file which contains the shortcut key
assignments.    To change key assignments, choose Key Assignments from the File Menu.

WinEdit Extensions [Standard]
A WinEdit Extension DLL is a dynamic-link library (DLL) that contains a pre-defined entry
point that processes menu commands and notification messages sent by WinEdit.    You can
redefine WinEdit's menus and write new functions which access WinEdit functions directly.
Creating a WinEdit Extension
A WinEdit Extension DLL must be named WE_EXT.DLL and must include a standard entry
point, the WE_ExtensionProc function. It must include the WE_EXT.H header file that defines
WinEdit messages and structures. WinEdit communicates with the Extension DLL by sending
messages to the DLL's WE_ExtensionProc function.

The WE_ExtensionProc function is defined as follows:

WE_ExtensionProc(HWND hWnd, /* WinEdit's window handle */
 HANDLE hInst, /* instance identifier */
 UINT wParam, /* command ID */
 LONG lParam) /* additional information */

The hWnd parameter identifies the main WinEdit window.    This window handle is used in
most of the extension functions, and should also be used as the parent window for any
child windows, dialog boxes, or message boxes created.
The hInst parameter is the HINSTANCE of the Extension DLL.    This parameter is used when
retrieving resources from the DLL.
The wParam parameter contains the message ID, which may be a command ID from a
menu or accelerator, a notification message from WinEdit, or a request for information
from WinEdit.
The lParam parameter is used in some messages to pass additional information to the
Extension DLL.

Loading the Extension
WinEdit searches the current directory and the path for WE_EXT.DLL, and explicitly loads
the Extension DLL if it is found.    If the DLL is successfully loaded, WinEdit then sends the
following notification and request messages to the Extension DLL:

WEN_LOADMENU
This message is a request for a menu handle to be used as the main WinEdit
menu.    If the Extension DLL returns a handle to a menu as the return value for
this message, WinEdit uses that menu.    If the Extension DLL returns 0, the
standard WinEdit menu is used.

WEN_LOADSHORTMENU
This message is a request for a menu handle to be used as the "No file" menu.   
WinEdit displays this menu whenever no MDI child windows are open.    If the
Extension DLL returns a handle to a menu as the return value for this message,
WinEdit uses that menu.    If the Extension DLL returns 0, the standard WinEdit
menu is used.

WEN_GETWINDOWMENU
If the Extension DLL returned a menu handle in the WEN_LOADMENU message,
this message will be sent to obtain the handle to the Window popup menu.   
WinEdit uses this menu handle to append MDI child window names to.

WEN_INITMENU
This message is sent before showing any drop down menu items.    Respond by
setting any check marks, graying any inapplicable items, etc.

WEN_RBUTTONDOWN
This message is sent when the right mouse button is clicked in an MDI child
window.

WEN_RBUTTONDOWNC
This message is sent when the right mouse button is clicked while the control key
is down in an MDI child window.

WEN_RBUTTONDOWNS
This message is sent when the right mouse button is clicked while the shift key is
down in an MDI child window.

WEN_RBUTTONDOWNSC
This message is sent when the right mouse button is clicked while the control key
and the shift keys are down in an MDI child window.

WEN_END
This message is sent before the DLL is unloaded.    Any cleanup processing should
be done, such as releasing allocated memory.

Processing Menu Selections
A WinEdit Extension DLL's menu resource can include two levels of menu identifiers.   
Identifiers in the range of WE_EXTFIRST through WE_EXTLAST (defined in WE_EXT.H) are
sent to the Extension DLL for processing.    Other identifiers defined in WE_EXT.H that begin
with IDM_ are internal WinEdit commands that WinEdit handles without calling the
Extension DLL.
When designing menus, use the IDM_ identifiers for predefined functions which WinEdit will
handle without further processing by your Extension DLL.    Use identifiers in the range of
WE_EXTFIRST through WE_EXTLAST for functions you define.    When the user selects a
menu item or presses an accelerator key which is defined with an identifier in that range,
WinEdit will pass the message on to the Extension DLL for processing.    The following code
example shows a simple example of a user-defined function being called:

 #define EXT_EXAMPLE WE_EXTFIRST+1
 .
 .
 .
 switch (wParam)
 {
 case EXT_EXAMPLE:
 return MyFunction();
 break;
Initializing the Extension Menu

Whenever the user selects a menu item, WinEdit sends the WEN_INITMENU message to the
Extension DLL. The Extension DLL should respond to this message by adding check marks
or disabling or enabling items.    If the Extension DLL did not load its own menu, it can
ignore this message.

More Information
WinEdit Extension Example

WinEdit Extension Example
The following example shows a minimal WinEdit Extension DLL's WE_ExtensionProc function. 
The Extension DLL loads its own menus, and defines one new command.

#include <windows.h>
#include "we_ext.h"

#define WINDOWMENU 4 /* position of window menu (0 based) */
#define EXT_EXAMPLE WE_EXTFIRST+1

UINT FAR PASCAL WE_ExtensionProc(HWND hWnd, /* WinEdit's window handle */
 HANDLE hInst, /* instance identifier */
 UINT wParam, /* command ID */
 LONG lParam) /* additional information */
 {
 switch (wParam)
 {
 case WEN_LOADMENU:

 /* This is the menu WinEdit will display when there
 * is at least one document window open. Return NULL
 * to use the default WinEdit menu.
 */
 return (UINT)LoadMenu(hInst, "MyMenu");
 break;

 case WEN_LOADSHORTMENU:

 /* this is the menu WinEdit will display when there
 * are no document windows open. Return NULL
 * to use the default WinEdit menu.
 */
 return (UINT)LoadMenu(hInst, "MyShortMenu");
 break;

 case WEN_GETWINDOWMENU:

 /* WinEdit needs the handle of the submenu to
 * append MDI document names to. The hWnd parameter
 * is used to send the handle to the main menu.
 * This message will not be sent if you return
 * NULL to the WEN_LOADMENU message.
 */
 return (UINT)GetSubMenu ((HMENU)hWnd, WINDOWMENU);
 break;

 case WEN_END:

 /* WinEdit is shutting down. Do any clean-up processing
 * here.
 */
 return TRUE;
 break;

 case WEN_INITMENU:

 /* This message is sent before showing any drop down
 * menu items. Respond by setting any checkmarks,
 * graying any inapplicable items, etc.
 */
 {

 POINT ptStart,ptEnd;
 HMENU hCurrentMenu;
 UINT wStatus;

 hCurrentMenu = GetMenu(hWnd);

 /* if there is a current selection, enable the cut & copy
 * commands.
 */
 wStatus = (UINT)edGetSelectionState(hWnd, &ptStart, &ptEnd);
 if (!wStatus)
 wStatus = MF_GRAYED;
 else
 wStatus = MF_ENABLED;
 EnableMenuItem(hCurrentMenu, IDM_EDITCUT, wStatus);
 EnableMenuItem(hCurrentMenu, IDM_EDITCOPY, wStatus);

 /* if there is text on the clipboard, enable the paste
 * command.
 */
 if (OpenClipboard(hWnd))
 {
 if (IsClipboardFormatAvailable(CF_TEXT)
 || IsClipboardFormatAvailable(CF_OEMTEXT))
 EnableMenuItem(hCurrentMenu, IDM_EDITPASTE, MF_ENABLED);
 else
 EnableMenuItem(hCurrentMenu, IDM_EDITPASTE, MF_GRAYED);
 CloseClipboard();
 }
 else
 EnableMenuItem(hCurrentMenu, IDM_EDITPASTE, MF_GRAYED);

 /* set the Undo, Redo, Insert, and WordWrap menu items */
 wStatus = (UINT)edGetUndoState(hWnd);
 if (!wStatus)
 wStatus = MF_GRAYED;
 else
 wStatus = MF_ENABLED;
 EnableMenuItem(hCurrentMenu, IDM_EDITUNDO, wStatus);

 wStatus = (UINT)edGetRedoState(hWnd);
 if (!wStatus)
 wStatus = MF_GRAYED;
 else
 wStatus = MF_ENABLED;
 EnableMenuItem(hCurrentMenu, IDM_EDITREDO, wStatus);

 wStatus = (UINT)edGetWordWrapState(hWnd);
 if (!wStatus)
 wStatus = MF_UNCHECKED;
 else
 wStatus = MF_CHECKED;
 CheckMenuItem (hCurrentMenu, IDM_EDITTOGGLEWRAP, MF_BYCOMMAND|wStatus);

 wStatus = (UINT)edGetInsertState(hWnd);
 if (!wStatus)
 wStatus = MF_UNCHECKED;
 else
 wStatus = MF_CHECKED;
 CheckMenuItem (hCurrentMenu, IDM_EDITTOGGLEINS, MF_BYCOMMAND|wStatus);

 return TRUE; /* we handled it, don't return 0 */
 break;

 }

 /* You can define your own commands in the range
 * WE_EXTFIRST to WE_EXTLAST that can be attached to
 * menu items or accelerators.
 */
 case EXT_EXAMPLE:
 MessageBox(hWnd,"Example command","WinEdit Extension",
 MB_ICONINFORMATION|MB_OK);
 return TRUE;
 break;

 default:

 /* return NULL to all messages not processed. */
 break;

 } /* end switch (wParam) */

 return NULL;
 }

More Information
WinEdit Extension API's

WinEdit Extension API's [Standard]
edAddButton
edDeleteButton
edEditBackspace
edEditBackTab
edEditBeginningOfFile
edEditBeginningOfLine
edEditClearSelection
edEditCopy
edEditCopyLine
edEditCut
edEditCutLine
edEditDelete
edEditDownLine
edEditEndOfFile
edEditEndOfLine
edEditEndSelection
edEditGetCurrentWord
edEditGoToBookmark
edEditGoToColumn
edEditGoToLine
edEditInsertString
edEditLeft
edEditPageDown
edEditPageUp
edEditPaste
edEditRedo
edEditRight
edEditSelectAll
edEditSetBookmark
edEditSetColumnBlock
edEditStartSelection
edEditTab
edEditToggleIns
edEditUndo
edEditUpLine
edEditWordLeft
edEditWordRight
edEditWrap
edFileExit
edFileList
edFileMerge
edFileNew
edFileOpen
edFilePageSetup
edFilePrint
edFilePrinterSetup
edFileSaveAs
edFileSave
edFileSetPreferences
edGetChar
edGetColumnNumber
edGetInsertState
edGetLineNumber

edGetModifiedStatus
edGetRedoState
edGetSelectionState
edGetUndoState
edGetWindowName
edGetWordWrapState
edHelpAbout
edHelpCommands
edHelpHelp
edHelpIndex
edHelpKeyboard
edHelpKeyWord
edHelpProcedures
edRecord
edRunCommand
edRunCompile
edRunConfigure
edRunDebug
edRunExecute
edRunMake
edRunRebuild
edSearchChange
edSearchFind
edSearchNextError
edSearchPrevError
edSearchRepeat
edSearchViewOutput
edStatusMsg
edWindowArranageIcons
edWindowCascade
edWindowClose
edWindowMaximize
edWindowMinimize
edWindowRestore
edWindowsCloseAll
edWindowTile

SearchRecord

edAddButton
Syntax

int FAR PASCAL edAddButton(HWND hWnd, WORD wIcon, WORD wCommand, WORD
wPosition)

Parameters
HWND hWnd

Identifies the WinEdit window.
WORD wIcon

Identifies which icon to display.
WORD wCommand

The command ID to be called when this button is pressed.    This can be any of the
IDM_ values for internal WinEdit commands, or the ID of an Extension DLL function.

WORD wPosition
The 0-based position on the control bar for the button to be added.

Return Value
The result is nonzero if the function was successful.    Otherwise it is zero.

Comments
edAddButton adds a button to the control bar.    The following WinEdit icon IDs are
documented in the WE_EXT.H include file:

#define IDLEXICON 6 /* main icon */
#define IDNOTE 2 /* icon for child windows */
#define IDONEUP 4 /* one-up print icon */
#define IDTWOUP 5 /* two-up print icon */

#define OPEN 48 /* file open */
#define SAVE 49 /* file save */
#define PRINT 50 /* file print */
#define FIND 51 /* find */
#define FINDNEXT 52 /* find next */
#define CHANGE 53 /* change */
#define NEXT 54 /* next error */
#define PREV 55 /* prev error */
#define COMPILE 56 /* compile */
#define MAKE 57 /* make */
#define REBUILD 58 /* rebuild */
#define DEBUGICON 59 /* debug */
#define EXECUTE 60 /* execute */
#define CUT 61 /* cut */
#define COPY 62 /* copy */
#define PASTE 63 /* paste */
#define HELPKEY 64 /* key word help */
#define UNDO 65 /* undo */
#define REDO 66 /* redo */
#define FILELIST 67 /* filelist */

edDeleteButton
Syntax
int FAR PASCAL edDeleteButton(HWND hWnd, WORD wPosition, WORD
wCommand);
Parameters

HWND hWnd
Identifies the WinEdit window.

WORD wPosition
The 0-based position on the control bar for the button to be added.

WORD wCommand
The command ID associated with this button.

Return Value
The result is nonzero if the function was successful.    Otherwise it is zero.

Comments
The default WinEdit control bar has the following commands:

Position Command
----------- --------------
0 IDM_FILEOPEN
1 IDM_FILESAVE
2 IDM_FILELIST
3 IDM_FILEPRINT
4 IDM_EDITUNDO
5 IDM_EDITREDO
6 IDM_EDITCUT
7 IDM_EDITCOPY
8 IDM_EDITPASTE
9 IDM_SEARCHFIND
10 IDM_SEARCHNEXT
11 IDM_SEARCHCHANGE
12 IDM_COMPILE
13 IDM_MAKE
14 IDM_REBUILD
15 IDM_DEBUG
16 IDM_EXECUTE
17 IDM_SEARCHPREVERROR
18 IDM_SEARCHNEXTERROR
19 IDM_HELPKEYWORDS

edFileList
Syntax

int FAR PASCAL edFileList(HWND hWnd);
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the function was successful.    Otherwise it is zero.

Comments
edFileList brings up the Reopen File dialog box (same as selecting Previous Files from the
File menu), allowing the user to pick a file to open from a list of the last 20 previously
opened files.

edFileNew
Syntax

int FAR PASCAL edFileNew(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the new window was successfully opened.    Otherwise it is zero.

Comments
edFileNew creates a new MDI child window.

edFileOpen
Syntax

int FAR PASCAL edFileOpen(HWND hWnd, LPSTR lpFileName)
Parameters

HWND hWnd
Identifies the WinEdit window.

LPSTR lpFileName
Name of file to open.

Return Value
The result is nonzero if a new window was created and the file was read.    Otherwise it is
zero.

Comments
edFileOpen creates a new MDI child window and reads an existing file into the window.   
To open a file without prompting, pass a valid file name to edFileOpen in the lpFileName
parameter.    If lpFileName is NULL, the File Open dialog box will be used to obtain a file
name from the user.

edFileMerge
Syntax

int FAR PASCAL edFileMerge(HWND hWnd, LPSTR lpFileName)
Parameters

HWND hWnd
Identifies the WinEdit window.

LPSTR lpFileName
Name of file to merge into current window.    This must be the name of an existing file.

Return Value
The result is nonzero if the file was read.    Otherwise it is zero.

Comments
edFileMerge reads an existing file into the active MDI child window.    To merge a file
without prompting, pass a valid file name to edFileMerge in the lpFileName parameter.    If
lpFileName is NULL, the File Merge dialog box will be used to obtain a file name from the
user.

edFileSave
Syntax

int FAR PASCAL edFileSave(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the file was successfully saved.    Otherwise it is zero.

Comments
edFileSave saves the file in the currently active MDI child window without prompting.   

See Also
edGetModifiedStatus
edFileSaveAs

edFileSaveAs
Syntax

int FAR PASCAL edFileSaveAs(HWND hWnd, LPSTR lpFileName)
Parameters

HWND hWnd
Identifies the WinEdit window.

LPSTR lpFileName
Name of file to save.

Return Value
The result is nonzero if the file was successfully saved.    Otherwise the return value is
zero.

Comments
edFileSaveAs saves the file in the currently active MDI child window.    If lpFileName is not
NULL, edFileSaveAs saves the file with that name without prompting.    If lpFileName is
NULL, the File Save As dialog box will be used to obtain a file name from the user.

See Also
edGetModifiedStatus
edFileSave

edFilePrint
Syntax

int FAR PASCAL edFilePrint(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the print job file was successful.    Otherwise it is zero.

edFilePageSetup
Syntax

int FAR PASCAL edFilePageSetup(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the function was successful.    Otherwise it is zero.

Comments
edFilePageSetup brings up the Page Setup dialog box.

edFilePrinterSetup
Syntax

int FAR PASCAL edFilePrinterSetup(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the function was successful.    Otherwise it is zero.

Comments
edFilePrinterSetup brings up a dialog box listing all installed printers.    The user can
choose a printer from the list, which WinEdit will use for all print jobs.    The user can also
access the printer's Setup dialog box to change printer settings.    These changes, if any,
are used for the current editing session only and do not change the system wide printer
settings.

edFileSetPreferences
Syntax

int FAR PASCAL edFileSetPreferences(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the function was successful.    Otherwise it is zero.

Comments
edFileSetPreferences allows the user to set screen font, tab size, and other configuration
options through a dialog box.    The results are stored in WINEDIT.INI and used in future
editing sessions.

edFileExit
Syntax

int FAR PASCAL edFileExit(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
TRUE if the user did not cancel the exit.    FALSE otherwise.

Comments
If there are any unsaved files, the user will be prompted to save before closing.    The user
can cancel the exit operation at that point.    If there are no unsaved files, the exit is
unconditional.

See Also
edGetModifiedStatus
edFileSave
edFileSaveAs

edEditUndo
Syntax

int FAR PASCAL edEditUndo(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
TRUE if any operation was undone, FALSE otherwise.

See Also
edGetUndoState

edEditRedo
Syntax

int FAR PASCAL edEditRedo(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
TRUE if any operation was redone, FALSE otherwise.

See Also
edGetRedoState

edEditCut
Syntax

int FAR PASCAL edEditCut(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
TRUE if any text was cut to the clipboard, FALSE otherwise.

Comments
edEditCut cuts the current selection to the clipboard.

See Also
edEditCutLine
edEditDelete

edEditCopy
Syntax

int FAR PASCAL edEditCopy(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
TRUE if any text was copied to the clipboard, FALSE otherwise.

Comments
edEditCopy copies the current selection to the clipboard.

See Also
edEditCopyLine

edEditPaste
Syntax

int FAR PASCAL edEditPaste(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
TRUE if any text was pasted from the clipboard, FALSE otherwise.

Comments
edEditPaste pastes text from the clipboard into the active MDI child window.

edEditDelete
Syntax

int FAR PASCAL edEditDelete(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
TRUE if any text was deleted, FALSE otherwise.

Comments
edEditDelete deletes either the current selection or, if there is no selection, the character
following the current insertion position.    The text is deleted and is not copyed to the
clipboard.

See Also
edEditCut
edEditCutLine

edEditToggleIns
Syntax

int FAR PASCAL edEditToggleIns(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
TRUE if the Insert state was changed, FALSE otherwise.

Comments
edEditToggleIns toggles the insert state between Insert and Overtype modes.

See Also
edGetInsertState

edEditWrap
Syntax

int FAR PASCAL edEditWrap(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
TRUE if word wrap state was changed, FALSE otherwise.

Comments
edEditWrap toggles the word wrap state on or off.

See Also
edGetWordWrapState

edEditSetColumnBlock
Syntax

int FAR PASCAL edEditSetColumnBlock(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
TRUE if column block state was set, FALSE otherwise.

Comments
edEditSetColumnBlock enables column block marking for the next block operation.   
WinEdit automatically returns to stream block marking after the next block operation.

edEditInsertString
Syntax

int FAR PASCAL edEditInsertString(HWND hWnd, LPSTR lpString)
Parameters

HWND hWnd
Identifies the WinEdit window

LPSTR lpString
Identifies the text to be inserted.

Return Value
TRUE if any text was inserted.

Comments
edEditInsertString inserts lpString at the current insertion position.

edEditBackspace
Syntax

int FAR PASCAL edEditBackspace(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise it is zero.

Comments
edEditBackSpace deletes the character to the left of the current position.

edEditSelectAll
Syntax

int FAR PASCAL edEditSelectAll(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise it is zero.

Comments
edEditSelectAll selects all the text in the active window.    The current position is moved to
the end of the file.

edEditCopyLine
Syntax

int FAR PASCAL edEditCopyLine(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise it is zero.

Comments
edEditCopyLine copies the current line to the clipboard if there is no selection.    If there is
a selection, edEditCopyLine calls edEditCopy and copies the current selection to the
clipboard.

See Also
edEditCopy

edEditCutLine
Syntax

int FAR PASCAL edEditCutLine(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise it is zero.

Comments
edEditCutLine cuts the current line to the clipboard if there is no selection.    If there is a
selection, edEditCutLine calls edEditCut and cuts the current selection to the clipboard.

See Also
edEditCut

edEditGoToLine
Syntax

int FAR PASCAL edEditGoToLine(HWND hWnd, DWORD dwLineNo)
Parameters

HWND hWnd
Identifies the WinEdit window

DWORD dwLineNo
Identifes the line number to go to.

Return Value
The result is nonzero if the current position was changed to dwLineNo.    Otherwise it is
zero.

Comments
edEditGoToLine moves the current position to the line identified by the dwLineNo
parameter.    If dwLineNo is greater than the last line in the file, the current position is
moved to the last line in the file.

edEditGoToColumn
Syntax

int FAR PASCAL edEditGoToColumn(HWND hWnd, int iColNo)
Parameters

HWND hWnd
Identifies the WinEdit window.

int iColNo
Identifies the column number to go to.

Return Value
The result is nonzero if the current position was changed to iColNo.    Otherwise it is zero.

Comments
edEditGoToColumn moves the current position to the column identified by iColNo.

edEditBeginningOfLine
Syntax

int FAR PASCAL edEditBeginningOfLine(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise it is zero.

Comments
edEditBeginningOfLine moves the current position to Column 1.

edEditEndOfLine
Syntax

int FAR PASCAL edEditEndOfLine(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise it is zero.

Comments
edEditEndOfLine moves the current position to the column following the last text
character in the current line.

edEditBeginningOfFile
Syntax

int FAR PASCAL edEditBeginningOfFile(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise it is zero.

Comments
edEditBeginningOfFile moves the current position to Line 1, Column 1.

edEditEndOfFile
Syntax

int FAR PASCAL edEditEndOfFile(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise it is zero.

Comments
edEditEndOfFile moves the current position to the column following the last text character
at the end of the file.

edEditDownLine
Syntax

int FAR PASCAL edEditDownLine(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edEditDownLine moves the current position to the next line.

edEditUpLine
Syntax

int FAR PASCAL edEditUpLine(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edEditUpLine moves the current position to the previous line.

edEditLeft
Syntax

int FAR PASCAL edEditLeft(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edEditLeft moves the current position one column to the left.    If the current position is
Column 1, the current position is moved to the end of the previous line.

edEditRight
Syntax

int FAR PASCAL edEditRight(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edEditRight moves the current position one column to the right.

edEditPageUp
Syntax

int FAR PASCAL edEditPageUp(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edEditPageUp moves the current position one screenful of lines up.

edEditPageDown
Syntax

int FAR PASCAL edEditPageDown(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edEditPageDown moves the current position one screenful of lines down.

edEditWordLeft
Syntax

int FAR PASCAL edEditWordLeft(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edEditWordLeft moves the current position one word to the left.

edEditWordRight
Syntax

int FAR PASCAL edEditWordRight(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edEditWordRight moves the current position one word to the right.

edEditStartSelection
Syntax

int FAR PASCAL edEditStartSelection(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edEditStartSelection marks the beginning position of a new selection.    Any previous
selection is cleared.

edEditEndSelection
Syntax

int FAR PASCAL edEditEndSelection(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edEditEndSelection completes the marking of a selection started with
edEditStartSelection.

edEditClearSelection
Syntax

int FAR PASCAL edEditClearSelection(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edEditClearSelection removes any selection marks.

edEditSetBookMark
Syntax

int FAR PASCAL edEditSetBookMark(HWND hWnd, int iMark)
Parameters

HWND hWnd
Identifies the WinEdit window

int iMark
Identifies the mark to be set.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edEditSetBookMark sets a mark at the current position.    The caret can subsequently be
moved to that position with edEditGoToBookMark.

edEditGoToBookMark
Syntax

int FAR PASCAL edEditGoToBookMark(HWND hWnd, int iMark)
Parameters

HWND hWnd
Identifies the WinEdit window.

int iMark
Identifies the mark to go to.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edEditGoToBookMark moves the current position to the mark previously set with a call to
edEditSetBookMark.

edEditTab
Syntax

int FAR PASCAL edEditTab(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edEditTab inserts spaces and moves the current position to the next tab stop.    If there is
a selection, every line within the selection is shifted to the right one tab stop.

edEditBackTab
Syntax

int FAR PASCAL edEditBackTab(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edEditBackTab moves the current position to the previous tab stop.    If there is a
selection, every line within the selection is shifted to the left one tab stop.

edEditGetCurrentWord
Syntax

int FAR PASCAL edEditGetCurrentWord(HWND hWnd, LPSTR lpBuffer, int iLength)
Parameters

HWND hWnd
Identifies the WinEdit window.

LPSTR lpBuffer
A buffer for the returned word.

int iLength
The length of lpBuffer.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edEditGetCurrentWord fills lpBuffer with the word at the current position.    If the caret is
not on an alphanumeric character, lpBuffer is not filled.

edSearchFind
Syntax

int FAR PASCAL edSearchFind(HWND hWnd, LPSEARCHRECORD lpSearch)
Parameters

HWND hWnd
Identifies the WinEdit window.

LPSEARCHRECORD lpSearch
Identifies the search parameters to be used.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edSearchFind searches for the text identified by the lpSearchText field of lpSearch.    The
lpReplaceText field of lpSearch is ignored.

See Also
SEARCHRECORD

edRecord
Syntax

int FAR PASCAL edRecord(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edRecord begins or ends macro recording.

edSearchRepeat
Syntax

int FAR PASCAL edSearchRepeat(HWND hWnd, LPSEARCHRECORD lpSearch)
Parameters

HWND hWnd
Identifies the WinEdit window.

LPSEARCHRECORD lpSearch
Identifies the search parameters to be used.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edSearchRepeat conducts a search using the same search string used in the previous
search.    The lpSearchText and lpReplaceText fields of lpSearch are ignored.

See Also
SEARCHRECORD

edSearchChange
Syntax

int FAR PASCAL edSearchChange(HWND hWnd, LPSEARCHRECORD lpSearch)
Parameters

HWND hWnd
Identifies the WinEdit window.

LPSEARCHRECORD lpSearch
Identifies the search parameters to be used.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edSearchChange searches for the text identified by the lpSearchText field of lpSearch and
replaces it with the text identified by the lpReplaceText field of lpSearch.

See Also
SEARCHRECORD

edSearchNextError
Syntax

int FAR PASCAL edSearchNextError(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edSearchNextError displays the next warning or error message on the status line.

edSearchPrevError
Syntax

int FAR PASCAL edSearchPrevError(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edSearchPrevError displays the previous warning or error message on the status line.

edSearchViewOutput
Syntax

int FAR PASCAL edSearchViewOutput(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edSearchViewOutput loads the captured output from a compilation into an MDI child
window.

edRunCompile
Syntax

int FAR PASCAL edRunCompile(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edRunCompile executes the Run command.    The command is set in the Run.Configure
dialog box.

See Also
edRunConfigure

edRunMake
Syntax

int FAR PASCAL edRunMake(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edRunMAke executes the Make command.    The command is set in the Run.Configure
dialog box.

See Also
edRunConfigure

edRunRebuild
Syntax

int FAR PASCAL edRunRebuild(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edRunRebuild executes the Rebuild command.    The command is set in the Run.Configure
dialog box.

See Also
edRunConfigure

edRunDebug
Syntax

int FAR PASCAL edRunDebug(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edRunDebug executes the Debug command.    The command is set in the Run.Configure
dialog box.

See Also
edRunConfigure

edRunExecute
Syntax

int FAR PASCAL edRunExecute(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edRunExecute executes the Execute command.    The command is set in the
Run.Configure dialog box.

See Also
edRunConfigure

edRunCommand
Syntax

int FAR PASCAL edRunCommand(HWND hWnd, BOOL bWait, BOOL bCapture, LPSTR
lpCommand)

Parameters
HWND hWnd

Identifies the WinEdit window.

BOOL bWait
If TRUE, WinEdit won't return until the process has completed.

BOOL bCapture
If TRUE, any character output from the process will be captured in a file named
EDOUT.    Output in Microsoft or Borland error format can be parsed and displayed
with calls to edViewNextError and edViewPrevError.

LPSTR lpCommand
Identifies the command, including any command line parameters, to execute.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
Only the output from DOS character mode programs which write to stdout can be
captured.

edRunConfigure
Syntax

int FAR PASCAL edRunConfigure(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edRunConfigure brings up the dialog box which allows the user to configure the Run
commands.

edStatusMsg
Syntax

int FAR PASCAL edStatusMsg(HWND hWnd, LPSTR lpString)
Parameters

HWND hWnd
Identifies the WinEdit window.

LPSTR lpString
Identifies the string to write on the status bar.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edStatusMsg displays lpString on the WinEdit status bar.

edWindowTile
Syntax

int FAR PASCAL edWindowTile(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edWindowTile tiles all MDI child windows.    If there are three or less windows, the windows
will be tiled horizontally.

edWindowCascade
Syntax

int FAR PASCAL edWindowCascade(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edWindowCascade cascades the MDI child windows.

edWindowArrangeIcons
Syntax

int FAR PASCAL edWindowArrangeIcons(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edWindowArrangeIcons orders all minimized MDI child windows.

edWindowMinimize
Syntax

int FAR PASCAL edWindowMinimize(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edWindowMinimize minimizes the active MDI child window.

edWindowMaximize
Syntax

int FAR PASCAL edWindowMaximize(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edWindowMaximize maximizes the active MDI child window.

edWindowRestore
Syntax

int FAR PASCAL edWindowRestore(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edWindowRestore restores the active MDI child window to its non-minimized, non-
maximized state.

edWindowClose
Syntax

int FAR PASCAL edWindowClose(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edWindowClose closes the active MDI child window.    If there are unsaved changes, the
user is prompted to save the changes before closing.

edWindowCloseAll
Syntax

int FAR PASCAL edWindowCloseAll(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edWindowCloseAll closes all MDI child windows.    If there are unsaved changes, the user
is prompted to save the changes before closing.

edHelpIndex
Syntax

int FAR PASCAL edHelpIndex(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edHelpIndex calls WinHelp and displays the main WinEdit help index.

edHelpKeyboard
Syntax

int FAR PASCAL edHelpKeyboard(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edHelpIndex calls WinHelp and displays the 'keyboard' help topic.

edHelpCommands
Syntax

int FAR PASCAL edHelpCommands(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edHelpCommands calls WinHelp and displays the 'commands' help topic.

edHelpProcedures
Syntax

int FAR PASCAL edHelpProcedures(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edHelpProcedures calls WinHelp and displays the 'procedures' help topic.

edHelpKeyWord
Syntax

int FAR PASCAL edHelpKeyWord(HWND hWnd)
Parameters

HWND hWnd
Return Value

The result is nonzero if the operation was successful.    Otherwise the result is zero.
Comments

edHelpKeyWord retrieves the current word and uses that as a help topic for Windows API
help.    WinEdit looks for a Windows API help file in this order:

The help file identified by the SDKHELP entry in WINEDIT.INI
WIN31WH.HLP file
QCWIN.HLP
SDKWIN.HLP

edHelpHelp
Syntax

int FAR PASCAL edHelpHelp(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edHelpCommands calls WinHelp and displays the 'using help' help topic.

edHelpAbout
Syntax

int FAR PASCAL edHelpAbout(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edHelpAbout displays WinEdit's About dialog box.

edGetModifiedStatus
Syntax

int FAR PASCAL edGetModifiedStatus(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
TRUE if the active MDI child has been modified.

edGetLineNumber
Syntax

int FAR PASCAL edGetLineNumber(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The line number of the current position in the active MDI child window if successful, 0 if
not.

edGetColumnNumber
Syntax

int FAR PASCAL edGetColumnNumber(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The column number of the current position in the active MDI child window if successful, 0
if not.

edGetSelectionState
Syntax

int FAR PASCAL edGetSelectionState(HWND hWnd, LPPOINT ptStart, LPPOINT ptEnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

LPPOINT ptStart
The x field contains the line number and the y field contains the column number of
the start of the selection.

LPPOINT ptEnd
The x field contains the line number and the y field contains the column number of
the end of the selection.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

edGetUndoState
Syntax

int FAR PASCAL edGetUndoState(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if any operation can be undone.    Otherwise the result is zero.

edGetRedoState
Syntax

int FAR PASCAL edGetRedoState(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The result is nonzero if any operation can be redone.    Otherwise the result is zero.

edGetWordWrapState
Syntax

int FAR PASCAL edGetWordWrapState(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
TRUE if word wrap is enabled, FALSE otherwise.

edGetInsertState
Syntax

int FAR PASCAL edGetInsertState(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
TRUE if Insert is on, FALSE if Overwrite is on.

edGetWindowName
Syntax

int FAR PASCAL edGetWindowName(HWND hWnd, LPSTR lpBuffer, int iSize)
Parameters

HWND hWnd
Identifies the WinEdit window
.

LPSTR lpBuffer
Buffer to hold the returned file name.

int iSize
Length of lpBuffer.

Return Value
The result is nonzero if the operation was successful.    Otherwise the result is zero.

Comments
edGetWindowName fills lpBuffer with the fully qualified path name of the active MDI child
window.

edGetChar
Syntax

int FAR PASCAL edGetChar(HWND hWnd)
Parameters

HWND hWnd
Identifies the WinEdit window.

Return Value
The character at the current position.

SEARCHRECORD
typedef struct tagSEARCHRECORD
 {
 UINT fComplain: 1; /* show 'not found' etc. to user */
 UINT fPrompt: 1; /* bring up search/replace dialog box */
 UINT fMatchCase: 1; /* exact case match only */
 UINT fForward: 1; /* forward direction */
 UINT fChangeAll: 1; /* change all */
 UINT fConfirm: 1; /* ask user to confirm changes */
 UINT fRegular: 1; /* use regular expressions */
 UINT fUnused: 9;
 LPSTR lpSearchText; /* string to search for */
 LPSTR lpReplaceText; /* string to replace found text with */
 } SEARCHRECORD;

typedef SEARCHRECORD FAR *LPSEARCHRECORD;

The SEARCHRECORD structure holds the information used in calls to the edSearchFind,
edSearchRepeat, and edSearchChange functions.

Member Description
fComplain If this flag is set, a "Not found" message box will be shown to the user on

unsuccessful searches.
fPrompt If this flag is set, the search and/or replace information will be obtained through

the use of a dialog box rather than the SEARCHRECORD information.
fMatchCase If this flag is set, case sensitivity is turned on.
fForward If this flag is set, the search is in a forward direction from the current position.
fChangeAll If this flag is set, the replace operation continues until cancelled by the user or

the end of file is reached.
fConfirm If this flag is set, the user will be prompted to confirm each replacement.
fRegular If this flag is set, the search string is parsed for regular expression statements
fUnused Reserved.
lpSearchTextA LPSTR to the text string to be searched for.    This field must contain a valid

zero terminated string unless the fPrompt flag is set.
lpReplaceText A LPSTR to the text string to be used as a replacement.    This field must

contain a valid zero terminated string in calls to edSearchReplace unless the
fPrompt flag is set.

See Also
edSearchFind
edSearchRepeat
edSearchChange

Configuring the Utility Menu [Professional]
For the complete reference on creating menus with WIL scripts consult the Windows
InterfaceLanguage Reference Manual
The Utility Menu is a custom menu created with WIL (Windows Interface Language)
commands. To edit the Utility Menu file choose "Edit Utility Menu" from the Utility Menu.

In the WINEDIT.MNU file, the menu item text that appears below the Utility Menu begins in
Column one of the text file.    Commands for the menu item are at least 8 spaces to the right
below the menu text.    In the example below, "File Open with prompt" is the text that will
appear on the Utility Menu and the "WFileOpen("")" command will be executed if the menu
item is selected.

File Open with prompt ; Open a document file via dialog box
 WFileOpen("")
To create a pop-out submenu, add one space before the menu title for every item of the
main menu.    For example, "Accessories" will appear on the Utility Menu with "Appointment
Scheduling" and "Calculator" appearing as pop out menu selections.

Accessories
 Appointment Scheduling
 run("Calendar.exe","")
 C&alculator
 run("calc.exe","")
Adding an ampersand before any letter in the title causes that letter to be displayed
underlined.    Such underlined letters are recognized by Windows as menu hot keys accessed
through an ALT+letter key combination.
See Also:
Utility Menu
WIL Commands

WIL Commands [Professional]
The following WIL commands are specific to WinEdit and are used to access editor functions
when configuring the Utility Menufile (WINEDIT.MNU).    In addition to these commands, any
WIL command can be used as well.    Consult the Windows Interface Language Reference
Manual or the WIL.HLP help file for more information on the Windows Interface Language
and its available commands.

wAddButton
wCallMacro
wChange
wDelButton
wEdBackspace
wEdBackTab
wEdCopyLine
wEdCopy
wEdCutLine
wEdCut
wEdDelete
wEdDownLine
wEdEndofFile
wEdEndSel
wEdEnd
wEdGetWord
wEdGoToCol
wEdGoToLine
wEdHome
wEdInsString
wEdLeft
wEdNewLine
wEdPageDown
wEdPageUp
wEdPaste
wEdRedo
wEdRight
wEdSelectAll
wEdSetColBlk
wEdStartSel
wEdTab
wEdToggleIns
wEdTopOfFile
wEdUndo
wEdUpLine
wEdWordLeft
wEdWordRight
wEdWrap
wFileExit
wFileList
wFileMerge
wFileNew
wFileOpen
wFilePgSetup
wFilePrint
wFileSaveAs
wFileSave

wFind
wGetChar
wGetColNo
wGetFileName
wGetIns
wGetLineNo
wGetModified
wGetRedo
wGetSelState
wGetUndo
wGetWrap
wHelpAbout
wHelpCmds
wHelpHelp
wHelpIndex
wHelpKeybrd
wHelpKeyWord
wNextError
wPrevError
wPrinSetup
wRecord
wRepeat
wRunCommand
wRunCompile
wRunConfig
wRunDebug
wRunExecute
wRunMake
wRunRebuild
wSetPrefs
wStatusMsg
wViewOutput
wWinArricons
wWinCascade
wWinCloseAll
wWinClose
wWinMaximize
wWinMinimize
wWinRestore
wWinTile

wAddButton
wAddButton(icon, command, position, tiptext)
Comments

wAddButton adds a new button to the control bar.

Icon is the constant identifier indicating which icon to use and can be one of the following
values:

@openicon @makeicon
@saveicon @rebuildicon
@listicon @debugicon
@printicon @executeicon
@findicon @cuticon
@repeaticon @copyicon
@changeicon @pasteicon
@nexticon @undoicon
@previcon @redoicon
@compileicon @helpkeyicon

The command parameter is the constant identifier indicating which command to execute
when the user clicks the icon.    The command parameter can be one of the following
values:

@wfilenew @wfileopen
@wfilemerge @wfilelist
@wfilesave @wfilesaveas
@wfileprint @wfilepgstup
@wprinsetup @wsetprefs
@wfileexit @wedundo
@wedredo @wedcut
@wedcopy @wedpaste
@weddelete @wedtogleins
@wedwrap @wedsetcolbk
@wedinsstrng @wedbackspce
@wedselctall @wedcopyline
@wedcutline @wedgotoline
@wedgotocol @wedhome
@wedend @wetopoffile
@weendoffile @wedupline
@weddownline @wedleft
@wedright @wedpageup
@wedpagedown @wedwordleft
@wewordright @wedstartsel
@wedendsel @wedclearsel
@wedtab @wedbacktab
@wedgetword @wfind
@wrepeat @wchange
@wnexterror @wpreverror
@wviewoutput @wruncompile
@wrunmake @wrunrebuild
@wrundebug @wrunexecute
@wruncommand @wrunconfig
@wwintile @wwincascade
@wwnarrIcons @wwnminimize
@wwnmaximize @wwinrestore

@wwinclose @wwncloseall
@whelpindex @whelpkeybrd
@whelpcmds @whlpkeyword
@whelphelp @whelpabout
@wgtmodified @wgetlineno
@wgetcolno @wgtselstate
@wgetundo @wgetredo
@wgetwrap @wgetins
@wgtfilename @wgetchar
@waddbutton @wdelbutton
@wcall1 @wcall2
@wcall3 @wcall4
@wcall5 @wcall6
@wcall7 @wcall8
@wcall9 @wcall10
@wcall11 @wcall12
@wcall13 @wcall14
@wcall15 @wcall16
@wcall17 @wcall18
@wcall19 @wcall20

The position parameter is the 0-based position on the control bar for the button to be
added.    (the first button is position 0 and the last is position 16)

The tiptext parameter is a string to display as popup text for the new button.

Example:
 wAddButton(@debugicon, @wcall1, 12, Debug)
The above example will add the debug icon to the control bar at position 12.    The "@wcall1"
parameter will run the macro commands in the WWWEDIT.DLL file for label number 1.    Look
to the WWWEDIT.DLL file in the Windows directory for more information.
See Also:
wDelButton

wAutoIndent
wAutoIndent()
Comments
wAutoIndent() toggles AutoIndent on or off.    With AutoIndent on, WinEdit indents a new line
so that the first character of the new line matches the indentation of the preceding line.   
With AutoIndent off, no indenting is done.

wCallMacro
wCallMacro(label)
Comments
wCallMacro calls a user-defined macro defined in the WWWEDIT.DLL file.    Label is a string
which is used as a label in the WWWEDIT.DLL file.    In order to use the wCallMacro function
with control bar icons, the label for each macro must be a number from 1 through 20 (or
@wcall1-@wcall20) - see wAddButton for an example.   
Example:
 wCallMacro (1)
The above command calls the macro defined for label number 1 in the WWWEDIT.DLL file.   
See the WWWEDIT.DLL file in the Windows directory for more information.

wDelButton
wDelButton(position,command)
Comments

wDelButton deletes the button at the indicated position.    Command is the command
constant as described for the wAddButton command (see wAddButton).    The default
WinEdit control bar has the following commands:

Position Command
----------- --------------
0 @WFileOpen
1 @WFileSave
2 @WFileList
3 @WFilePrint
4 @WEdUndo
5 @WEdRedo
6 @WEdCut
7 @WEdCopy
8 @WEdPaste
9 @WFind
10 @WRepeat
11 @WChange
12 @WRunCompile
13 @WRunMake
14 @WRunRebuild
15 @WRunDebug
16 @WRunExecute
17 @WPrevError
18 @WNextError
19 @WHlpKeyword

See Also:
wAddButton

wChange
wChange(SearchText, ReplaceText, Forward, MatchCase,
ChangeAll)
Comments

wChange searches for the specified SearchText and replaces it with ReplaceText.    If
ChangeAll is equal to 1 (True), then the search and replace will continue to the end of the
file.

Example:
 wChange("Blue", "Red", 1, 0, 1)

The above command will start at the cursor position and search through to the end of the
file, replacing text string "Blue" with "Red".    The MatchCase argument is set to False or 0, so
the search string "Blue" will be changed to "Red" regardless of the case of the word blue in
the document.

wEdBackspace
wEdBackspace()
Comments

wEdBackSpace deletes the character to the left of the current position.    This command is
the equivalent of pressing the backspace character on the keyboard.

Example:
 wEdBackSpace()
 wEdHome()

The above example deletes the character to the left of the cursor and moves the cursor to
the beginning of the line.

wEdCopy
wEdCopy()
Comments

wEdCopy copies the selected text to the Windows clipboard.
Example:
 wEdStartSel()
 wEdWordLeft()
 wEdEndSel()
 wEdCopy()

The above commands will select the word to the left of the cursor and copy it to the
Windows clipboard.

wEdPaste
wEdPaste()
Comments

wEdPaste pastes text from the clipboard into the active WinEdit document window.
Example:
 wEdSelectAll()
 wEdCopy()
 wFileNew()
 wEdPaste()

The above commands will copy the contents of the active document window and paste the
contents of the window into a new document window.

wEdCopyLine
wEdCopyLine()
Comments

wEdCopyLine copies the current line to the clipboard if there is no selection.    If there is a
selection, wEdCopyLine calls wEdCopy and copies the selected text to the clipboard.

Example:
 wEdCopyLine()
 wEdDownLine()
 wEdPaste()

The above example copies the line of text where the cursor resides, moves down a line, and
pastes the line of text from the clipboard.

wEdCut
wEdCut()
Comments

wEdCut cuts the current selection to the clipboard.    The text cut to the clipboard can be
later inserted into a document with the wEdPaste command.    This command requires
that text is selected.    If nothing is selected, the wEdCut() command will return the
following message:
Nothing selected to cut.

See Also:
wEdDelete
wEdPaste

wEdCutLine
wEdCutLine()
Comments

wEdCutLine cuts the current line to the clipboard if there is no selection.    If text is
selected, then wEdCutLine calls wEdCut and cuts the selected text to the clipboard.

Example:
 wEdCutLine()
 wEdGoToLine(4)
 wEdPaste()

The above example cuts the contents of the current line to the clipboard and pastes the line
on line 4 of the active document.

wEdDelete
wEdDelete()
Comments

wEdDelete deletes either the current selection or, if there is no selection, the character
following the current position without copying the text to the clipboard.    This command is
the equivalent of pressing the Del or Delete character on the keyboard.

Example:
 wEdDelete()
 wEdHome()

The above example deletes the character to the right of the cursor and moves the cursor to
the beginning of the line.

See Also:
wEdCut

wEdGoToLine
wEdGoToLine(lineno)
Comments

wEdGoToLine moves the current position to the line number identified by the lineno
parameter.    If the line number is greater than the last line in the file, the current position
is moved to the last line in the file.   

Example:
 wEdGoToLine(6)

The above command will move the cursor to line 6 in the document file while maintaining
the current column position.    So if your cursor is positioned on Line 13, Col 21, the cursor
position will be Line 6, Col 21 after the above command is executed.

See Also:
wEdGoToCol

wEdGoToCol
wEdGoToCol(colno)
Comments

wEdGoToCol moves the current cursor position to the column identified by the colno
parameter.

Example:
 wEdGoToCol(10)

The above command will move the cursor to colum 10 in the document file while
maintaining the current line position.    So if your cursor is positioned on Line 13, Col 21, the
cursor position will be Line 13, Col 10 after the above command is executed.

See Also:
wEdGoToLine

wEdHome
wEdHome()
Comments

wEdHome moves the current cursor position to Column 1 (the beginning of the line).
Example:
 wEdHome()
 wEdPaste()

The above commands will move the cursor to the beginning of the line and paste in the
contents of the clipboard.

wEdEnd
wEdEnd()
Comments

wEdEnd moves the cursor position to the column following the last text or space
character in the current line.

Example:
 wEdEnd()
 wEdInsString("Hello")

The above commands will insert the text Hello at the end of the current line.

wEdTopOfFile
wEdTopOfFile()
Comments

wEdTopOfFile moves the cursor position to Line 1, Column 1 (the equivalent of pressing
CTRL+Home).

Example:
 wEdTopOfFile()
 wEdInsString("Top of File")

The above commands will insert the text "Top of File" at the beginning of the document
window (Line 1 Column 1).

wEdEndOfFile
wEdEndOfFile()
Comments

wEdEndOfFile moves the cursor position to the column following the last text character on
the last line of the file (the equivalent of pressing CTRL+End).

Example:
 wEdEndOfFile()
 wEdInsString("End of File")

The above commands will insert the text "End of File" after the last text in the document
window.

wEdUpLine
wEdUpLine()
Comments

wEdUpLine moves the current cursor position to the previous line (moves to the line
above the current line).

Example:
 wEdUpLine()
 wEdHome()

The above commands will move the cursor position to the beginning of the previous line.

wEdDownLine
wEdDownLine()
Comments

wEdDownLine moves the current position to the next line (moves to the line below the
current line).

Example:
 wEdDownLine()
 wEdEnd()

The above commands will move the cursor position to the end of the next line.

wEdLeft
wEdLeft()
Comments

wEdLeft moves the current position one column to the left.    If the current position is
Column 1, the current position is moved to the end of the previous line.

Example:
 wEdLeft()
 wEdTab()

The above commands will move the cursor position one position to the left and insert a tab
(the number of spaces for the tab character is set in File Preferences.

wEdRight
wEdRight()
Comments

wEdRight moves the current position one column to the right.
Example:
 wEdRight()
 wEdTab()

The above commands will move the cursor position one position to the right and insert a tab
(the number of spaces for the tab character is set in File Preferences.

wEdPageUp
wEdPageUp()
Comments

wEdPageUp moves the current position up one screenful of text (equivalent of pressing
PgUp on the keyboard).

wEdPageDown
wEdPageDown()
Comments

wEdPageDown moves the current position down one screenful of text (equivalent of
pressing PgDn on the keyboard).

wEdWordLeft
wEdWordLeft()
Comments

wEdWordLeft moves the cursor position one word to the left (the cursor will be positioned
just before the word to the left of the current cursor position).

wEdWordRight
wEdWordRight()
Comments

wEdWordRight moves the current position one word to the right (the cursor will be
positioned just before the word to the right of the current cursor position).

wEdStartSel
wEdStartSel()
Comments

wEdStartSel marks the beginning position of a new selection.    Any previous selection is
cleared.

Example:
 wEdStartSel()
 wEdWordRight()
 wEdEndSel()
 wEdCopy()

The above commands will copy the word to the right of the cursor position into the Windows
clipboard (use the Edit Paste menu command or wEdPaste() to retrieve the text).

wEdEndSel
wEdEndSel()
Comments

wEditEndSel completes the marking of a selection started with wEdStartSel.
Example:
 wEdStartSel()
 wEdWordRight()
 WEdWordRight()
 wEdEndSel()
 wEdCopy()
 wEdHome()
 wEdPaste()

The above commands will copy the two words to the right of the cursor position and paste
the two words at the beginning of the current line.

wEdTab
wEdTab()
Comments

wEdTab inserts a number of spaces and moves the current position to the next tab stop.   
If more than one line is selected, every line within the selection is shifted to the right one
tab stop.    The amount of spaces that is inserted is set in the Preferences dialog (choose
Preferences from the File menu).

wEdBackTab
wEdBackTab()
Comments

wEdBackTab moves the current position to the previous tab stop.    If there is a selection,
every line within the selection is shifted to the left one tab stop.    The amount of spaces
that the text is shifted is a settings in the Preferences dialog (choose Preferences from the
File menu).

wEdGetWord
wEdGetWord()
Comments

wEdGetWord returns the word at the current cursor position.    If the cursor is not on an
alphanumeric character, an empty string is returned.

Example:
 A=wEdGetWord()
 Message("Title",A) ; WIL Command, see WIL.HLP

The above commands get the word where the insertion point is positioned and assign the
text to the variable "A".    The Message command is used to display the contents of the A
variable in a message box.    The "Message" command is a WIL (Windows Interface
Language) command.    Look to the WIL.HLP file for more information on the WIL commands. 

wEdSelectAll
wEdSelectAll()
Comments

wEdSelectAll selects all the text in the active document window.    The insertion position is
moved to the end of the file.

Example:
 wEdSelectAll()
 wEdCopy()
 wFileNew()
 wEdPaste()

The above commands will copy the contents of the active document window and paste the
contents of the window into a new document window.

wEdInsString
wEdInsString(string)
Comments

wEdInsString inserts string at the current position.
Example:
 A=wEdGetWord()
 wEdDownLine()
 wEdGoToCol(1)
 wEdInsString(A)

The above commands get the word where the insertion point is positioned and assign the
text to the variable "A".    The remaining commands inserts the contents of the A variable at
the beginning of the next line.

wEdNewLine
wEdNewLine()
Comments

wEdNewLine is equivalent to pressing the "Enter" key to break a line at the current
position.

Example:
 wEdGoToCol(10)
 wEdNewLine()

The above commands move the current position to column 10 and inserts a new line at that
point.

wEdSetColBlk
wEdSetColBlk()
Comments

wEdSetColBlk enables column block marking for the next block operation.    WinEdit
automatically returns to stream block marking after the next block operation.

Example:
 wEdStartSel()
 wEdSetColBlk()
 wEdGoToCol(10)
 wEdDownLine()
 wEdEndSel()
 wEdCopy()
 wEdDownLine()
 wEdGoToCol(1)
 wEdPaste()

The first five lines above will block select 10 characters to the right of the insertion point on
the current line and the line below.    Once marked, the text is copied to the clipboard and
inserted and at the beginning of the following line.

wEdWrap
wEdWrap()
Comments

wEdWrap toggles the word wrap state on or off.    If Word Wrap is selected under the Edit
menu (turned "on"), then the wEdWrap() command will toggle word wrap "off".

See Also:
wGetWrap

wEdToggleIns
wEdToggleIns()
Comments

wEdToggleIns toggles the insert state between Insert and Overtype modes (INS or OVR
indicates the insert state on the status bar).    If Insert Mode is selected under the Edit
menu (turned "on"), then the wEdToggleIns() command will toggle to OverType mode.

See Also:
wGetIns

wEdRedo
wEdRedo()
Comments

Equivalent of selecting Redo from the Edit menu.    The wEdRedo() command allows you
to reverse any Undo command.

See Also:
wGetRedo

wEdUndo
wEdUndo()
Comments

Allows you to "undo" the most recent editing action.
See Also:
wGetUndo

wFileList
wFileList()
Comments

wFileList brings up the Reopen File dialog box which lists the last 20 documents opened
(same as pressiong F4 or choosing Previous Files from the File menu)

wFileNew
wFileNew()
Comments

wFileNew creates a new MDI child window.
Example:
 wEdSelectAll()
 wEdCopy()
 wFileNew()
 wEdPaste()

The above commands will copy the contents of the active document window and paste the
contents of the window into a new document window.

wFileOpen
wFileOpen(filename)
Comments

wFileOpen creates a new MDI child window and reads an existing file into the window.    To
open a file without prompting, pass a valid file name to wFileOpen.    If the FileName
parameter is "", the File Open dialog box will appear prompting the user for a filename.

Example:
 wFileOpen("")
The above command will prompt the user for a filename to open.    To open a file directly
without prompting, use the following syntax:
 wFileOpen("FILENAME.TXT")

wFileMerge
wFileMerge(filename)
Comments

wFileMerge reads an existing file into the active MDI child window.    To merge a file
without prompting, pass a valid file name to wFileMerge in the FileName parameter.        If
FileName is "", the File Merge dialog box will be used to obtain a file name from the user.

Example:
 wFileMerge("")
The above command will prompt the user for a filename to merge.    To merge in a file
directly without prompting, use the following syntax:
 wFileMerge("FILENAME.TXT")
The indicated file is merged at the insertion position in the active document window.

wFileSave
wFileSave()
Comments

wFileSave saves the file in the currently active MDI child window without prompting (same
as selecting Save from the File menu).

wFileSaveAs
wFileSaveAs(filename)
Comments

wFileSaveAs saves the file in the currently active MDI child window to a new filename.
Example:
 wFileSaveAs("")
The above command will prompt the user for a filename.    To save the file directly to new file
name without prompting, use the following syntax:
 wFileSaveAs("FILENAME.TXT")

wFilePrint
wFilePrint()
Comments

wFilePrint prints the text in the currently active MDI child window (same as choose Print
from the File menu).

wFilePgSetup
wFilePgSetup()
Comments

wFilePgSetup brings up the Page Setup dialog box (same as choosing Page Setup from the
File menu).

wPrinSetup
wPrinSetup()
Comments

wPrinSetup brings up a dialog box listing all installed printers (same as selecting Printer
Setup from the File menu).    The user can choose a printer from the list and WinEdit will
use the selected driver for all print jobs.    The user can also access the printer driver
setup dialog by choosing the Setup button.

wFileExit
wFileExit()
Comments

Command to exit WinEdit.    If there are any unsaved files, the user will be prompted to
save before closing.    The user can cancel the exit operation at that point.    If there are no
unsaved files, the exit is automatics (no chance to cancel the exit).

wFind
wFind(SearchText,Forward,MatchCase)
Comments

wFind searches for the text identified by SearchText parameter.    If Forward is TRUE, the
search direction is forward.    If MatchCase is TRUE, then the search is case sensitive.

Example:
 wFind("Blue",1,1)
The above example searches forward through the document window for the word Blue.

wGetChar
wGetChar()
Return Value

Returns the character to the right of the insertion point.
Example:
 a=wGetChar()
 wEdInsString(a)
This example gets the character to the right of the insertion point and inserts the character
into the document window.

wGetFileName
wGetFileName()
Comments

wGetFileName returns a string with the fully qualified path name of the active MDI child
window.

Example:
 a=wGetFileName()
 wEdInsString(a)
This example gets the filename for the active document window and inserts the filename
(with the path information) at the insertion point.

wGetIns
wGetIns()
Return Value

Returns TRUE (1) if Insert is on, FALSE (0) if Overtype is on.
Example:
 a=wGetIns()
 If a == 0 Then Message ("Title", "Overtype is on")
 If a == 1 Then Message ("Title", "Insert Mode is on")
The above commands assign the return value of wGetIns() to the "a" variable and then test
for whether "a" is True or False.    The If command used above to evaluate the "a" variable is
a WIL (Windows Interface Language) command.    Look to the WIL.HLP file for more
information on the WIL commands.
See Also:
wEdToggleIns

wGetSelState
wGetSelState()
Return Value

The result is TRUE if there is a selection, otherwise the function returns zero.
Example:
 a=wGetSelState()
 If a == 1 Then wEdCopy()
This example checks whether there is a selection, and if True copies the selection to the
clipboard.

wGetRedo
wGetRedo()
Return Value

The result is TRUE (1) if any operation can be redone.    Otherwise wGetRedo returns zero.
Example:
 a=wGetRedo()
 If a == 1 Then wEdRedo()
The above example checks whether the last edit can be redone and if the return value is
TRUE, the edit if redone ("wEdRedo()" is the same as choosing Redo from the Edit menu).
See Also:
wEdRedo

wGetUndo
wGetUndo()
Return Value

The result is TRUE (1) if any operation can be undone.    Otherwise wGetUndo returns zero.
("wEdUndo()" is the same as choosing Undo from the Edit menu).

Example:
 a=wGetUndo()
 If a == 1 Then wEdUndo()
The above example checks whether the last edit can be undone and if the return value is
TRUE, the edit if undone.
See Also:
wEdUndo

wGetWrap
wGetWrap()
Return Value

The result is TRUE if word wrap is enabled, FALSE otherwise.
Example:
 a=wGetWrap()
 If a == 0 Then Message ("Title", "Word Wrap is off")
 If a == 1 Then Message ("Title", "Word Wrap is on")
The above commands assign the return value of wGetWrap() to the "a" variable and then
test for whether "a" is True or False.    The If command used above to evaluate the "a"
variable is a WIL (Windows Interface Language) command.    Look to the WIL.HLP file for
more information on the WIL commands.
See Also:
wEdWrap

wGetColNo
wGetColNo()
Return Value

Returns the column number position for the insertion position in the active MDI child
window.    wGetColNo returns 0 if unsuccessful.

Example:
 a=wGetColNo()
 Message("Column Number", a)
The above commands get the column number for the insertion point and post the results in
a message box.    Look to the WIL.HLP file for more information on WIL commands such as
the Message command.

wGetLineNo
wGetLineNo()
Return Value

Returns the line number position for the insertion position in the active MDI child window.
wGetLineNo returns0 if unsuccessful.

Example:
 a=wGetLineNo()
 Message("Line Number", a)
The above commands get the line number for the insertion point and post the results in a
message box.    Look to the WIL.HLP file for more information on WIL commands such as the
Message command.

wGetModified
wGetModified()
Return Value

TRUE if the active MDI child has been modified.
Example:
 a=wGetModified()
 If a == 1 Then Message ("Mod", "Text has been modified")

The above example will post a message if the text in the document window has been
modified.

wHelpAbout
wHelpAbout()
Comments

wHelpAbout displays WinEdit's About dialog box with version number and copyright
information.

wHelpCmds
wHelpCmds()
Comments

wHelpCmds calls up the WinEdit Help file and displays the Menu Commands help topic.

wHelpKeybrd()
wHelpKeybrd
Comments

wHelpKeybrd calls up the WinEdit Help file and displays the Keyboard and Mouse
Commands help topic.

wHelpKeyWord
wHelpKeyWord()
Comments

wHelpKeyWord retrieves the current word and uses that as a help topic for Windows API
help.

wHelpHelp
wHelpHelp()
Comments

wHelpHelp calls WinHelp and displays the 'How to Use Help' topic.

wHelpIndex
wHelpIndex()
Comments

wHelpIndex calls WinHelp and displays the main WinEdit help index.

wNextError
wNextError()
Comments

wNextError displays the next warning or error message on the status line.

wPrevError
wPrevError()
Comments

wPrevError displays the previous warning or error message on the status line.

wRecord
wRecord()
Comments

wRecord starts or stops macro recording.

wRepeat
wRepeat()
Comments

wRepeat conducts a search using the same search string used in the previous search.
Example:
 wFind("Blue",1,1)
 PlayWaveForm("tada.wav", 0)
 wRepeat()

This example searches forward for the word Blue, plays the TADA.WAV file and then repeats
the wFind statement.    The PlayWaveForm command used above is a WIL (Windows Interface
Language) command.    Look to the WIL.HLP file for more information on the WIL commands.

wRunConfig
wRunConfig()
Comments

wRunConfig brings up the Project Management dialog box which allows the user to
configure the different run and compile commands.

wSetProject(FileName)
wSetProject(FileName)
Comments
wSetProject sets the current project to FileName, without bringing up the Project
Management dialog box.

wRunCommand
wRunCommand(Command,Wait,Capture)
Parameters

Command
Identifies the command, including any command line parameters, to execute.

Wait
If set to TRUE, WinEdit won't return until the process has completed.

Capture
If set toTRUE, any character output from the process will be captured in a file named
EDOUT.    Output in the Microsoft or Borland error format can be parsed and displayed
with calls to wNextError and wPrevError.

wRunCompile
wRunCompile()
Comments

wRunCompile executes the Compile command syntax entered in the Project Management
dialog box (choose Configure... from the Project menu to indicate the Compile syntax).

wRunDebug
wRunDebug()
Comments

wRunDebug executes the Debug command syntax entered in the Project Management
dialog box (choose Configure... from the Project menu to indicate the Debug syntax).

wRunExecute
wRunExecute()
Comments

wRunExecute executes the Execute command syntax entered in the Project Management
dialog box (choose Configure... from the Project menu to indicate the Execute syntax).

wRunMake
wRunMake()
Comments

wRunMake executes the Make command syntax entered in the Project Management
dialog box (choose Configure... from the Project menu to indicate the Make syntax).

wRunRebuild
wRunRebuild()
Comments

wRunRebuild executes the Rebuild command syntax entered in the Project Management
dialog box (choose Configure... from the Project menu to indicate the Rebuild syntax).

wStatusMsg
wStatusMsg(message)
Comments

wStatusMsg() displays the string "message" on the WinEdit status line.

wSetPrefs
wSetPrefs()
Comments

wSetPrefs() displays the preferences dialog to allow the user to set the screen font, tab
size, and other configuration options.    The results are stored in WINEDIT.INI and used in
future editing sessions.

wViewOutput
wViewOutput()
Comments

wViewOutput() loads the captured output from a compilation into an MDI child window
(only the output from DOS character mode programs which write to stdout can be
captured).

wWinArricons
wWinArrIcons()
Comments

wWinArrIcons rearranges all minimized MDI child windows icons along the bottom of the
WinEdit application window.

Example:
 wFileOpen("accel.rc")
 wWinMinimize()
 wFileNew()
 wWinMinimize()
 wWinArrIcons()

The above example opens the ACCEL.RC file and a new document window, minimizes them
both and then arranges the icons left to right along the bottom of the WinEdit application
window.

wWinCascade
wWinCascade()
Comments

wWinCascade cascades all MDI child windows (arranges all of the open windows in a
stack).   

wWinClose
wWinClose()
Comments

wWinClose closes the active MDI child window.    If there are unsaved changes, the user is
prompted to save the changes before the file is closed.

wWinCloseAll
wWinCloseAll()
Comments

wWinCloseAll closes all MDI child windows.    If there are unsaved changes, the user is
prompted to save the changes to each file before the file is closed.

wWinMaximize
wWinMaximize()
Comments

wWinMaximize maximizes the active MDI child window.
Example:
 wFileNew()
 wWinMaximize()

This example opens a new document window and maximizes the window.

wWinMinimize
wWinMinimize()
Comments

wWinMinimize minimizes the active MDI child window to an icon at the bottom of the
WinEdit application window.

Example:
 wFileOpen("accel.rc")
 wWinMaximize()

This example opens the ACCEL.RC file and minimizes the window to an icon.

wWinNext
wWinNext()
Comments
wWinNext brings the focus to the next MDI child window.

wWinRestore
wWinRestore()
Comments

wWinRestore restores the active MDI child window to its non-minimized, non-maximized
state.

wWinTile
wWinTile()
Comments

wWinTile tiles all MDI child windows.    If there are three or less windows, the windows will
be tiled horizontally left to right.

